K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2021

\(\dfrac{BC}{x}=\dfrac{BC+6x}{BC}=>BC^2=BC.x+6x^2\)

\(=>6x^2+BC.x-BC^2=0\)

\(< =>6\left(x^2+\dfrac{1}{6}BCx-\dfrac{1}{6}BC^2\right)=0\)

\(=>x^2+\dfrac{1}{6}BCx-\dfrac{1}{6}BC^2=0\)

\(< =>x^2+2.\dfrac{1}{12}BC.x+\left(\dfrac{1}{12}BC^2\right)-\left(\dfrac{1}{12}BC\right)^2-\dfrac{1}{6}BC^2=0\)

\(< =>\left(x+\dfrac{1}{12}BC\right)^2-\left(\dfrac{5}{12}BC\right)^2=0\)

\(=>\left(x+\dfrac{1}{12}BC+\dfrac{5}{12}BC\right)\left(x+\dfrac{1}{12}BC-\dfrac{5}{12}BC\right)=0\)

\(< =>\left(x+\dfrac{1}{2}BC\right)\left(x-\dfrac{1}{3}BC\right)=0\)

\(=>\left[{}\begin{matrix}x+\dfrac{1}{2}BC=0\\x-\dfrac{1}{3}BC=0\end{matrix}\right.=>\left[{}\begin{matrix}BC=2x\\BC=3x\end{matrix}\right.\)

12 tháng 6 2021

chỗ cuôi bn sửa lại thành BC=-2x

vậy BC=3x hoặc BC=-2x nhé

 

a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: BA^2=BH*BC

=>BM^2=BH*BC

=>BM/BH=BC/BM

=>ΔBMC đồng dạng với ΔBHM

=>góc BMH=góc BCM

31 tháng 5 2020

a) Xét 2 tam giác vuông \(AHB\)\(CAB\) có:

\(\widehat{AHB}=\widehat{BAC}=90^0\left(gt\right)\)

\(\widehat{B}\) chung

=> \(\Delta AHB\sim\Delta CAB\left(g-g\right)\) (1).

+ Xét 2 tam giác vuông \(CHA\)\(CAB\) có:

\(\widehat{AHC}=\widehat{BAC}=90^0\left(gt\right)\)

\(\widehat{C}\) chung

=> \(\Delta CHA\sim\Delta CAB\left(g-g\right)\) (2).

Từ (1) và (2) => \(\Delta AHB\sim\Delta CHA\left(đpcm\right).\)

b) Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go).

=> \(BC^2=3^2+4^2\)

=> \(BC^2=9+16\)

=> \(BC^2=25\)

=> \(BC=5\left(cm\right)\) (vì \(BC>0\)).

+ Xét \(\Delta ABC\) có:

\(AD\) là đường phân giác của \(\widehat{BAC}\left(gt\right)\)

=> \(\frac{BD}{AB}=\frac{CD}{AC}\) (tính chất đường phân giác của tam giác).

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{BD}{AB}=\frac{CD}{AC}=\frac{BD+CD}{AB+AC}=\frac{BC}{AB+AC}=\frac{5}{3+4}=\frac{5}{7}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{BD}{AB}=\frac{5}{7}\Rightarrow\frac{BD}{3}=\frac{5}{7}\Rightarrow BD=\frac{5}{7}.3=\frac{15}{7}\left(cm\right)\\\frac{CD}{AC}=\frac{5}{7}\Rightarrow\frac{CD}{4}=\frac{5}{7}\Rightarrow CD=\frac{5}{7}.4=\frac{20}{7}\left(cm\right)\end{matrix}\right.\)

Vậy \(BD=\frac{15}{7}\left(cm\right);CD=\frac{20}{7}\left(cm\right).\)

Chúc bạn học tốt!

5 tháng 9 2017

3x.(3x-6)-3x.(6x-19)=26

=>3x.3x+3x.(-6)+(-3x).6x+(-3x).(-19)=26

=>9x^2-18x-18x^2+57x=26

=>-9x^2+39x=26

9 tháng 9 2021

\(\left(x^4-x^3-3x^2+x+2\right):\left(x^2-1\right)\)

\(=\left[x^2\left(x^2-1\right)-x\left(x^2-1\right)-2\left(x^2-1\right)\right]:\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-x-2\right):\left(x^2-1\right)=x^2-x-2\)

a: \(\dfrac{3x+2}{4}-\dfrac{3x+1}{3}=\dfrac{5}{6}\)

=>3(3x+2)-4(3x+1)=10

=>9x+6-12x-4=10

=>-3x+2=10

=>-3x=8

=>x=-8/3

b: \(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{9x-10}{4-x^2}\)

=>(x-1)(x-2)-x(x+2)=-9x+10

=>x^2-3x+2-x^2-2x=-9x+10

=>-5x+2=-9x+10

=>x=2(loại)

ko pc lun nek ...........ukm ko pc

11 tháng 9 2018

A B C D K 1 2 3 1 2 1 2

Vif CD = AD + BC maf KD = AD => KC = BC

Tam giacs DAK cân tại D => góc A1 = góc K1

Mà K1 = A2 (so le trong) => Góc A1 = góc A2 => AK là tia phân giác góc A.

Chứng minh tương tự, BK là phân giác góc B

14 tháng 3 2022

3x(2-x)-5=1-(3x2+2)

<=>6x-3x2-5=-3x2-2

<=>6x=3

<=>x=1/2