Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đa thức 4x3+ax+b4x3+ax+b chia hết cho đa thức x−2x−2 và x+1x+1 nên gọi thương của phép chia 4x3+ax+b4x3+ax+b cho x−2x−2 và x+1x+1 lần lượt là A(x) và B(x)
\Rightarrow 4x3+ax+b4x3+ax+b = (x−2)A(x)(x−2)A(x) (1)
4x3+ax+b4x3+ax+b = (x+1)B(x) (2)
Vì (1) và (2) thỏa mãn với \forall x nên cho x lần lượt bằng x = 2 và x = −1 ta được 32+2a+b=0 hay 2a+b = −32 x nên cho x lần lượt bằng x = 2 và x = −1 ta được 32+2a+b=0 hay 2a+b = −32
-4-a+b=0 \Leftrightarrow b-a=4
\Rightarrow 2a+b-b+a=-36
\Rightarrow 3a = -36 hay a = -12
\Rightarrow b= -12+4 = -8
Vậy: 2a−3b=−24+24 = 02a−3b=−24+24 = 0
Theo đề bài ta có :
\(x^4-4x^3+5ax^2-4bx+c⋮x^3+3x-9x-3\)
\(\Rightarrow x^4-4x^3+5ax^2-4bx+c\)
\(=\left(x^3+3x^2-9x-3\right)\left(x+m\right)\)
\(=x^4+\left(m+3\right).x^3+\left(3m-9\right).x^2-\left(9m+3\right).x-3m\)
\(\Rightarrow m+3=-4\Rightarrow m=-7\)
\(3m-9=5a\)
\(\Rightarrow a=-6\)
\(9m+3=4b\)
\(\Rightarrow b=-15\)
\(-3m=c\)
\(\Rightarrow c=21\)
Vậy \(a+b+c=-6-15+21=0\)
Lời giải:
Đặt \(A=x^4-4x^3+5ax^2-4bx+c\)
Biến đổi:
\(A=x(x^3+3x^2-9x-3)-7(x^3+3x^2-9x-3)+30x^2+5ax^2-60x-4bx+c-21\)
\(\Leftrightarrow A=(x-7)(x^3+3x^2-9x-3)+x^2(30+5a)-x(60+4b)+c-21\)
Thấy rằng bậc của \(x^2(30+5a)-x(60+4b)+c-21\) nhỏ hơn bậc của \(x^3+3x^2-9x-3\)
Do đó khi chia $A$ cho \(x^3+3x^2-9x-3\) thì số dư là \(x^2(30+5a)-x(60+4b)+c-21\)
Để phép chia hết thì số dư là $0$, tức là:
\(x^2(30+5a)-x(60+4b)+c-21=0\forall x\)
\(\Rightarrow \left\{\begin{matrix} 30+5a=0\\ 60+4b=0\\ c-21=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-6\\ b=-15\\ c=21\end{matrix}\right.\)
\(\Rightarrow a+b+c=0\) (đpcm)
ta có x^4-4x^3+5ax^2-4bx+c
= ( x^3+3x^2-9x-3)( x+m)
= x^4+ ( m+3)x^3 + (3m-9)x^2 - ( 9m+3)x -3m
=> m+3 = -4 => m=-7
3m -9 =5a => a=-6
9m +3 = 4b => b=-15
-3m=c => c= 21
vậy a+b+c =0
|
x4-4x3+5ax2-4bx+c = x. (x3 + 3x2 - 9x - 3) - 3x3 + 9x2 + 3x - 4x3 + 5ax2 - 4bx + c
= x. (x3 + 3x2 - 9x - 3) - 7x3 + (5a + 9)x2 + (3 - 4b)x + c
= x. (x3 + 3x2 - 9x - 3) - 7 .(x3 + 3x2 - 9x - 3) + 21x2 - 63x - 21 + (5a + 9)x2 + (3 - 4b)x + c
= (x - 7)(x3 + 3x2 - 9x - 3) + (5a + 30)x2 + (-4b - 60) x + c - 21
=> Đa thức x4-4x3+5ax2-4bx+c chia cho (x3 + 3x2 - 9x - 3) được thương là x - 7 và dư (5a + 30)x2 + (-4b - 60) x + c - 21
Phép chia là phép chia hết nên dư = 0
=> (5a + 30)x2 + (-4b - 60) x + c - 21 = 0 với mọi x
=> 5a + 30 = -4b - 60 = c - 21 = 0
=> a = -6; b = -15; c = 21 => a +b + c = 0
Bài 1:
a)-x^2+4x-5
=-(x2-4x+5)<0 với mọi x
=>-x^2+4x-5<0 với mọi x
b)x^4+3x^2+3
\(=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}>0\)với mọi x
=>x^4+3x^2+3>0 với mọi x
c) bn xét từng th ra
Bài 2:
a)9x^2-6x-3=0
=>3(3x2-2x-1)=0
=>3x2-2x-1=0
=>3x2+x-3x-1=0
=>x(3x+1)-(3x+1)=0
=>(x-1)(3x+1)=0
b)x^3+9x^2+27x+19=0
=>(x+1)(x2+8x+19) (dùng pp nhẩm nghiệm rồi mò ra)
- Với x+1=0 =>x=-1
- Với x2+8x+19 =>vô nghiệm
c)x(x-5)(x+5)-(x+2)(x^2-2x+4)=3
=>x3-25x-x3-8=3
=>-25x-8=3
=>-25x=1
=>x=-11/25
Giả sử \(x^4-4x^3+5ax^2-4bx+c:\left(x^3+3x^2-9x-3\right)\) được thương là \(x+d\)
Theo bài ra ta có
\(x^4-4x^3+5ax^2-4bx+c=\left(x^3+3x^2-9x-3\right)\left(x+d\right)\)
\(=x^4+3x^3-9x^2-3x+dx^3+3dx^2-9dx-3d\)
\(=x^4+x^3\left(3+d\right)+x^2\left(3d-9\right)+x\left(-3-9d\right)-3d\)
Áp dụng đồng nhất thức ta có
\(\left\{{}\begin{matrix}3+d=-4\\3d-9=5a\\-3-9d=-4b\\-3d=c\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}d=-7\\5a=-21-9=-30\\-4b=-3+63=60\\c=21\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}a=-6\\b=-15\\c=21\end{matrix}\right.\)
\(\Rightarrow a+b+c=0\)