Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)}{\left(x+1\right)\left(x^2-x+1\right)\left(x^4-x^3+1\right)}\)
\(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)}{\left(x^3+1\right)\left(x^4-x^3+1\right)}\)
\(=\dfrac{\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)}{x^7-x^6+x^3+x^4-x^3+1}\)
=\(\dfrac{\left(x^8-1\right)\left(x^8+1\right)}{x^7+x^4+1}\)
\(=\dfrac{x^{16}-1}{x^7+x^4+1}\)
\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{15}+1\right)\)
\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(\frac{1}{2}\left(5^{32}+1\right)=\frac{5^{32}+1}{2}\)
a)
Ta có
a chia 5 dư 4
=> a=5k+4 ( k là số tự nhiên )
\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16\)
Vì 25k^2 chia hết cho 5
40k chia hết cho 5
16 chia 5 dư 1
=> đpcm
2) Ta có
\(12=\frac{5^2-1}{2}\)
Thay vào biểu thức ta có
\(P=\frac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)}{2}\)
\(\Rightarrow P=\frac{\left[\left(5^2\right)^2-1^2\right]\left[\left(5^2\right)^2+1^2\right]\left(5^8+1\right)}{2}\)
\(\Rightarrow P=\frac{\left[\left(5^4\right)^2-1^2\right]\left[\left(5^4\right)^2+1^2\right]}{2}\)
\(\Rightarrow P=\frac{5^{16}-1}{2}\)
3)
\(\left(a+b+c\right)^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)
\(=a^3+b^3+c^2+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+cb+c^2\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Lời giải:
1)
Áp dụng BĐT AM-GM cho các số không âm ta có:
\(a^4+3=a^4+1+1+1\geq 4\sqrt[4]{a^4}\)
\(\Leftrightarrow a^4+3\geq 4|a|\geq 4a\)
Ta có đpcm. Dấu bằng xảy ra khi \(a=1\)
2)
Ghi đầy đủ đề:
\(a^2(1+b^2)+b^2(1+c^2)+c^2(1+a^2)\geq 6abc\)
Áp dụng BĐT AM-GM cho các số không âm:
\(\text{VT}=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\geq 6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}\)
\(\Leftrightarrow \text{VT}\geq 6\sqrt[6]{a^6b^6c^6}=6|abc|\geq 6abc\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=1\)
1. \(\left|x+5\right|-\left|1-2x\right|=x\left(1\right)\)
Với phương trình kiểu này thì phải lập bảng để xét dấu của x+5 và 1-2x ta có nghiệm của hai nhị thức để chúng bằng 0 lần lượt là -5 và 0,5. Bảng xét dấu:
Ứng với bảng ta có 3 khoảng giá trịn của x ứng với ba phương trình sau.
* Với \(x< -5\) (khoảng đầu)
\(\left(1\right)\Leftrightarrow-\left(x+5\right)-\left(1-2x\right)=x\\ \Leftrightarrow-x+2x-x=5+1\\ \Leftrightarrow0x=6\)
Phương trình vô nghiệm.
* Với \(-5\le x\le0,5\) (khoảng giữa)
\(\left(1\right)\Leftrightarrow\left(x+5\right)-\left(1-2x\right)=x\\ \Leftrightarrow x+2x-x=1-5\\ \Leftrightarrow x=-2\)
\(x=-2\) thỏa mãn điều kiện nên ta lấy.
* Với \(x>0,5\) (khoảng cuối)
\(\left(1\right)\Leftrightarrow\left(x+5\right)-\left(2x-1\right)=x\\ \Leftrightarrow x-2x-x=-5-1\\\Leftrightarrow x=3 \)
\(x=3\) thỏa nãm điều kiện nên ta lấy.
Kết luận tập nghiệm của phương trình (1) là: \(S=\left\{-2;3\right\}\)
Chứng minh bất đẳng thức:
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\\ \Rightarrow2a^2+2b^2\ge a^2+2ab_{ }+b^2\\ \Leftrightarrow2a^2+2b^2-a^2-b^2-2ab\ge0\\ \Leftrightarrow a^2-2ab+b^2\ge0\\\Leftrightarrow\left(a-b\right)^2\ge0\left(1\right)\)
Vì BĐT (2) luôn đúng với mọi a,b do đó ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
Có a = b+1
=> a - b =1
=> (a-b)(a+b)(a^2+b^2)(a^4+b^4)...(a^32+b^32) = (a-b)(a^64-b^64)
=> (a^2-b^2)(a^2+b^2)(a^4+b^4)...(a^32+b^32) = 1 . (a^64 - b^64)
=> (a^4-b^4)(a^4+b^4)(a^8+b^8)(a^16+b^16)(a^32+b^32) = a^64 - b^64
=> (a^8-b^8)(a^8+b^8)(a^16+b^16)(a^32+b^32) = a^64 - b^64
=> (a^16-b^16)(a^16+b^16)(a^32+b^32) = a^64 - b^64
=> (a^32-b^32)(a^32+b^32) = a^64 - b^64
=> a^64-b^64 = a^64 - b^64
=> đpcm
câu 2:
a(b-c)-b(a+c)+c(a-b)=-2bc
ta có:
a( b-c ) - b ( a +c )+ c(a-b)
=ab-ac-(ba+bc)+(ca-cb)
=ab-ac-ba-bc+ca-cb
=ab-ba-ac+ca-bc-cb
=0-0-bc-cb
=bc+(-cb)
=-2cb hay -2bc
b)a(1-b)+a(a^2-1)=a(a^2-b)
Ta có:
a(1-b) + a(a^2-1)
=a-ab+(a^3-a)
=a-ab+a^3-a
=a-a-ab+a^3
=0-ab+a^3
=-ab+a^3
=a(-b +a^2) hay a(a^2-b)
\(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
VT : (a + b + c)2 + a2 + b2 + c2
= a2 + b2 + c2 + 2ab +2bc + 2ac + a2 + b2 + c2
= ( a2 + 2ab + b2 ) + (b2 + 2bc + c2) + ( a2 + 2ac + c2)
= (a + b)2 + (b + c)2 + (a + c)2 = VP
Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)(đpcm)
\(VT=1.\left(2+1\right)\left(2^2+1\right)...\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{16}+1\right)\)
\(=...=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)