K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 8 2019

Bạn tham khảo tại link sau:

Câu hỏi của Vi Huỳnh - Toán lớp 9 | Học trực tuyến

AH
Akai Haruma
Giáo viên
3 tháng 8 2019

Lời giải:
\(A=\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)

\(=\sqrt{10+2\sqrt{2}(\sqrt{3}+\sqrt{5})+2\sqrt{15}}=\sqrt{2+(3+5+2\sqrt{15})+2\sqrt{2}(\sqrt{3}+\sqrt{5})}\)

\(=\sqrt{2+(\sqrt{3}+\sqrt{5})^2+2\sqrt{2}(\sqrt{3}+\sqrt{5})}\)

\(=\sqrt{(\sqrt{2}+\sqrt{3}+\sqrt{5})^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)

\(2B=2.\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=2.\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+(\sqrt{4}+\sqrt{6}+\sqrt{8})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=2.\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=2(1+\sqrt{2})\)

Do đó:

\(A-2B=\sqrt{3}+\sqrt{5}-(2+\sqrt{2})>\sqrt{2}+\sqrt{4}-(2+\sqrt{2})=0\)

\(\Rightarrow A>2B\)

4 tháng 8 2019

sao kq 2B ra nt a

4 tháng 6 2018

Ở onlinemath thì đông người thật nhưng không làm được bài khó

=> sang miny nhé bạn , bạn đặt câu hỏi rồi hỏi luôn emkhongnumberone ( thiên tài trong miny )

=> miny ít người nhưng rất hay onl và rất thông minh

13 tháng 8 2018

thằng kia mày nghĩ sao trong onlime math k ai làm đươc bài khó

22 tháng 7 2015

a/ \(=\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}\)

câu b k bik lm ^^

22 tháng 7 2015

b/ \(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2+2}{\sqrt{2}+\sqrt{3}+2}=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+2}=1+\sqrt{2}\)

29 tháng 1 2022

a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)

\(\sqrt{6}< \sqrt{6,25}=2,5\)

\(\sqrt{12}< \sqrt{12,25}=3,5\)

\(\sqrt{20}< \sqrt{20,25}=4,5\)

=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)

Vậy P < 12

30 tháng 1 2022

Answer:

ý a, tham khảo bài làm của @xyzquynhdi

\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)

\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)

\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)

\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)

21 tháng 6 2023

\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)