K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{AB^2+AC^2}{AB^2\cdot AC^2}=\dfrac{BC^2}{\left(AB\cdot AC\right)^2}\)

\(\Leftrightarrow AH^2\cdot BC^2=AB^2\cdot AC^2\)

hay \(AH\cdot BC=AB\cdot AC\)(luôn đúng)

b: \(AB=\sqrt{15^2-12^2}=9\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=7.2\left(cm\right)\)

11 tháng 1 2018

Câu a) Nè

Áp dụng định lí Pythagoras vào tam giác ABC

Ta có: \(AB^2+AC^2=BC^2\)

Vì AH hạ từ đỉnh A và vuông góc với BC nên AH là đường cao của tam giác ABC

Áp dụng tính chât đường cao của tam giác vuông

Ta có: \(AH\cdot BC=AB\cdot AC\)

Suy ra: \(AH^2\cdot BC^2=AB^2\cdot AC^2\)

Suy ra \(\frac{BC^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)

Suy ra \(\frac{AC^2+AB^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)

Suy ra: \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)

Vậy Kết luận 

~~~ Hết ~~~

Chụy là chanh đừng nhờn với chụy nha em.

Xong mik đã chứng minh xong một câu a) còn câu b dễ lắm tự làm nha, bro. Hết 

21 tháng 4 2020

co mot con chim

21 tháng 4 2020

Hiện tại hình không vẽ được mình chỉ ghi lời giải thôi nha !

\(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{AB^2+AC^2}{AB^2\cdot AC^2}=\frac{BC^2}{AB^2\cdot AC^2}\)

Theo công thức tính diện tích tam giác vuông ta có:\(S=\frac{1}{2}AH.BC=\frac{1}{2}AB.AC\)

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH^2.BC^2=AB^2.AC^2\)

Khi đó \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{BC^2}{AB^2\cdot AC^2}=\frac{BC^2}{AH^2\cdot BC^2}=\frac{1}{AH^2}\)

=> đpcm

18 tháng 2 2017

Xét 2 tam giác ΔAHB và ΔAHC có:
cạnh AH chung 
AHB^=AHC^=90∘ (do AH ⊥ BC)
AB=AC 
suy ra ΔAHB=ΔAHC (cạnh huyền- cạnh góc vuông)
⇒BH=CH và BAH^=CAH^
 

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(BK=\sqrt{AB^2-AH^2}=9\left(cm\right)\)

CK=BC-BK=16(cm)

4 tháng 4 2021

Bạn ơi, mình sắp xếp các cạnh và các góc đúng, không sai đâu nên đừng viết ngược lại nhá

a, Ta có : BH = HC = BC : 2

    =>    BH = HC = 8 : 2

    =>    BH = HC = 4 ( cm )

    => BH = HC

b, - Xét tam giác AHB vuông tại H có :

          AC= AH2 + HC2

=>     52  =   AH2  +   42

=>    25  = AH2  +  16

=> AH2 = 25 + 16

=> AH2 = 41

=> AH = 20,5 ( cm )