Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(|x-1|>3\Leftrightarrow \left[\begin{matrix} x-1>3\\ x-1< -3\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x>4\\ x< -2\end{matrix}\right.\)
\(\Rightarrow A=\left\{x\in\mathbb{R}|x\in (4;+\infty) \text{hoặc }x\in (-\infty;-2)\right\}\)
\(|x+2|< 5\Leftrightarrow -5< x+2< 5\Leftrightarrow -7< x< 3\Leftrightarrow x\in (-7;3)\)
\(\Rightarrow B=\left\{x\in\mathbb{R}|x\in (-7;3)\right\}\)
Do đó: \(A\cap B=\left\{\in\mathbb{R}|x\in (-7;-2)\right\}\)
Bài 2:
\(2< |x|\Leftrightarrow \left[\begin{matrix} x>2\\ x< -2\end{matrix}\right.(1)\)
\(|x|< 3\Leftrightarrow -3< x< 3(2)\)
Từ (1);(2) suy ra để $2< |x|< 3$ thì: \(\left[\begin{matrix} 2< x< 3\\ -3< x< -2\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x\in (2;3)\\ x\in (-3;-2)\end{matrix}\right.\)
Biểu diễn A qua hợp các khoảng:
\(A=(-3;-2)\cup (2;3)\)
a: A=(-7/4; -1/2]
\(B=\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\)
\(C=\left(\dfrac{2}{3};+\infty\right)\)
b: \(\left(A\cap B\right)\cap C=\varnothing\)
\(\left(A\cup C\right)\cap\left(B\A\right)\)
\(=(-\dfrac{7}{4};-\dfrac{1}{2}]\cup\left(\dfrac{2}{3};+\infty\right)\cap\left[\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\right]\)
\(=\left(4;\dfrac{9}{2}\right)\)
1/ B={x ∈ R| (9-x2)(x2-3x+2)=0}
Ta có:
(9-x2)(x2-3x+2)=0
⇔\(\left[{}\begin{matrix}9-x^2=0\\x^2-3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3+x\right)\left(3-x\right)=0\\\left(x^2-x\right)-\left(2x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x\left(x-1\right)-2\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\left(x-1\right)\left(x-2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=1\\x=2\end{matrix}\right.\)
⇒B={-3;1;2;3}
2/ Có 15 tập hợp con có 2 phần tử
Nếu đề đúng thì cả 4 đáp án đều sai nên khẳng định là đề sai
Bạn nhìn lại tập hợp A, khả năng là sai đề tại đấy :)
A=(-2;2)
B=[-3;2)
A giao B=(-2;2)
A\B=\(\varnothing\)
B\A=[-3;-2]
\(C_R\left(A\cap B\right)=R\backslash\left(-2;2\right)=(-\infty;-2]\cup[2;+\infty)\)
a/ \(\left\{a\right\};\left\{b\right\};\left\{a;b\right\};\varnothing\)
b/ \(\left\{1\right\};\left\{2\right\};\left\{3\right\};\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\};\left\{1;2;3\right\};\varnothing\)
c/ \(\left\{0\right\};\left\{1\right\};\left\{2\right\};\left\{3\right\};\left\{0;1\right\};\left\{0;2\right\};\left\{0;3\right\};\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\};\left\{0;1;2\right\};\left\{1;2;3\right\};\left\{0;2;3\right\};\left\{0;1;3\right\};\left\{0;1;2;3\right\};\varnothing\)
d/ \(\left\{1\right\};\left\{-2\right\};\left\{1;-2\right\};\varnothing\)
\(\left|x-2\right|=\left|x^2-3x+1\right|\Leftrightarrow\left(x^2-3x+1\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow\left(x^2-3x+1\right)^2-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x^2-4x+3\right)\left(x^2-2x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=3\\x=1\pm\sqrt{2}\end{matrix}\right.\)
Tập A có 4 phần tử trong khi tập B chỉ có 2 phần tử nên 2 tập này ko thể bằng nhau với mọi a;b
Đề sai, hoặc bạn ghi sai đề