Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
ai nay dung kinh nghiem la chinh
cau a)
ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)
\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)
khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)
\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)
\(x=\frac{3-1}{1}=2\)
suy ra
x^3-4x+1=1
A=1^2018
A=1
b)
ta thay
\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)
khi do
\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)
\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)
x=2
thay vao
x^3+3x-14=0
B=0^2018
B=0
\(x=1+\sqrt[3]{2}+\sqrt[3]{4}\Rightarrow x-1=\sqrt[3]{2}+\sqrt[3]{4}\)
\(\Rightarrow\left(x-1\right)^3=\left(\sqrt[3]{2}+\sqrt[3]{4}\right)^3\)
\(\Rightarrow x^3-3x^2+3x-1=6+6\left(\sqrt[3]{2}+\sqrt[3]{4}\right)\)
\(\Rightarrow x^3-3x^2+3x-1=6+6\left(x-1\right)\)
\(\Rightarrow x^3-3x^2-3x=1\)
\(\Rightarrow A=1+2020=2021\)
Ta có: \(x=2-\sqrt{3}\)\(\Rightarrow2-x=\sqrt{3}\)\(\Rightarrow\left(2-x\right)^2=3\)\(\Rightarrow4-4x+x^2=3\)\(\Rightarrow x^2-4x+1=0\)
Lại có: \(B=x^5-3x^4-3x^3+6x^2-20x+2018\)
\(\Rightarrow B=x^5-4x^4+x^4+x^3-4x^3+5x^2+x^2+20x+5+2013\)
\(\Rightarrow B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2013\)
\(\Rightarrow B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2013\)
\(\Rightarrow B=x^3\cdot0+x^2\cdot0+5\cdot0+2013=2013\)
b) Ta có: \(x+\sqrt{3}=2\Leftrightarrow x-2=-\sqrt{3}\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow x^2-4x+1=0\)
\(B=x^5-3x^4-3x^3+6x^2-20x+2021\)
\(B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2016\)
\(B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2016\)
Thế \(x^2-4x+1=0\)\(\Rightarrow B=2016.\)
Ta có : \(Q=\frac{x^6-3x^5+3x^4-x^3+2020}{x^6-x^3-3x^2-3x+2020}\)
=> \(Q=\frac{\left(x^6-x^5-x^4\right)+\left(-2x^5+2x^4+2x^3\right)+\left(2x^4-2x^3-2x^2\right)+\left(-x^3+x^2+x\right)+\left(x^2-x-1\right)+2021}{\left(x^6-x^5-x^4\right)+\left(x^5-x^4-x^3\right)+\left(2x^4-2x^3-2x^2\right)+\left(2x^3-2x^2-2x\right)+\left(x^2-x-1\right)+2021}\)
=> \(Q=\frac{x^4\left(x^2-x-1\right)-2x^3\left(x^2-x-1\right)+2x^2\left(x^2-x-1\right)-x\left(x^2-x-1\right)+\left(x^2-x-1\right)+2021}{x^4\left(x^2-x-1\right)+x^3\left(x^2-x-1\right)+2x^2\left(x^2-x-1\right)+\left(x^2-x-1\right)+2021}\)
=> \(Q=\frac{x^4.0-2x^3.0+2x^2.0-x.0+0+2021}{x^4.0+x^3.0+2x^2.0+0+2021}\)
=> \(Q=\frac{2021}{2021}=1\)