Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.THPT\)
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9.\frac{99}{100}\)
\(A=\frac{891}{100}\)
\(B=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)
\(B=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(B=\frac{1}{5}-\frac{1}{95}\)
\(B=\frac{18}{95}\)
\(D=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(D=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(D=\frac{1}{2}-\frac{1}{28}\)
\(D=\frac{13}{28}\)
Bài 1:
\(B=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)\(=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{2}\left(\frac{1}{2}+\frac{3}{4}-\frac{5}{6}\right)}+\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{8}\right)}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)
\(=\frac{1}{\frac{1}{2}}+3\) \(=2+3\) \(=5\)
Vậy B=5
Bài 2:
a) x3 - 36x = 0
=> x(x2-36)=0
=> x(x2+6x-6x-36)=0
=> x[x(x+6)-6(x+6) ]=0
=> x(x+6)(x-6)=0
\(\Rightarrow\orbr{\begin{cases}^{x=0}x+6=0\\x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}^{x=0}x=-6\\x=6\end{cases}}\)
Vậy x=0; x=-6; x=6
b) (x - y = 4 => x=4+y)
x−3y−2 =32
=>2(x-3) = 3(y-2)
=>2x-6= 3y-6
=>2x-3y=0
=>2(4+y)-3y=0
=>8+2y-3y=0
=>8-y=0
=>y=8 (thỏa mãn)
Do đó x=4+y=4+8=12 (thỏa mãn)
Vậy x=12 và y =8
B= 1/2 + 3/4 - 5/6/1/2(1.2 + 3/4 - 5/6) + 3(1/4+ 1/5 - 1/8)/ 1/4 1/5 - 1/8
B= 1/ 1/2 + 3
B= 2+3
B=5
B2:
a) x^3 - 36x = 0
x(x^2 - 36) = 0
=> x=0 hoặc x^2-36=0
=> x= 0 hoặc x^2=36
=> x=0 hoặc x= +- 6
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
a, \(\frac{1}{2}-\frac{3}{5}x=4-\frac{1}{3}x\)
<=> \(\frac{1}{2}-\frac{3}{5}x+\frac{1}{3}x=4\)
<=>\(\frac{1}{2}-x.\left(\frac{3}{5}-\frac{1}{3}\right)=4\)
<=>\(\frac{1}{2}-\frac{4}{15}x=4\)
<=>\(\frac{4}{15}x=\frac{1}{2}-4\)
<=>\(\frac{4}{15}x=\frac{-7}{2}\)
<=> x = \(\frac{-7}{2}:\frac{4}{15}\)
<=> x = \(\frac{-7}{2}.\frac{15}{4}\)
<=> x = \(\frac{-105}{8}\)
b,\(\left(x^2-5\right).x^2=0\)
<=> \(x^2-5=0:x^2\)
<=>\(x^2-5=0\)
<=> \(x^2=5\)
<=> x = 5:x
c, 2 . I x - \(\frac{1}{2}\)I = \(\frac{-1}{3}+5\frac{1}{3}\)
<=>2 . I x - \(\frac{1}{2}\)I = \(\frac{-1}{3}+\frac{5}{3}\)
<=>2 . I x - \(\frac{1}{2}\)I = \(\frac{4}{3}\)
<=> I x - \(\frac{1}{2}\)I = \(\frac{4}{3}:2\)
<=> I x - \(\frac{1}{2}\)I = \(\frac{4}{3}.\frac{1}{2}\)
<=> I x - \(\frac{1}{2}\)I = \(\frac{2}{3}\)
=> x - \(\frac{1}{2}\)= \(\frac{2}{3}\)hoặc x - \(\frac{1}{2}\)= \(\frac{-2}{3}\)
TH1: x -\(\frac{1}{2}\) = \(\frac{2}{3}\)
<=> x = \(\frac{2}{3}\)+ \(\frac{1}{2}\)
<=> x = \(\frac{7}{6}\)
TH2: x - \(\frac{1}{2}\)= \(\frac{-2}{3}\)
<=> x = \(\frac{-2}{3}\)+ \(\frac{1}{2}\)
<=> x = \(\frac{-1}{6}\)
d) I 2x - 3 I - x = 6
=> 2x - 3 - x = 6 hoặc 2x - 3 - x = - 6
TH1:2x - 3 - x = 6
<=> x - 3 = 6
<=> x = 6 + 3
<=> x = 9
TH2: 2x - 3 - x = - 6
<=> x - 3 = -6
<=> x = - 6 + 3
<=> x = - 3
+ I 2x - 3 I