Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*
a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC
a) Vì tam giác ABC vuông tại A
=> BAC = 90 độ
=> Vì K là hình chiếu của H trên AB
=> HK vuông góc với AB
=> HKA = 90 độ
=> HKA = BAC = 90 độ
=> KH // AI
=> KHIA là hình thang
Mà I là hình chiếu của H trên AC
=> HIA = 90 độ
=> HIA = BAC = 90 độ
=> KHIA là hình thang cân
b) Vì KHIA là hình thang cân
=> KA = HI
= >KI = HA
Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có
KA = HI
KI = AH
=> Tam giác KAI = tam giác HIC ( cgv-ch)
=> KIA = ACB ( DPCM)
c) con ý này tớ nội dung chưa học đến thông cảm
gọi số học sinh khối 7 là x (hs)
=> số học sinh khối 8 là 3x (hs)
=> số học sinh khối 9 là 3x : \(\frac{4}{5}\) = \(\frac{15}{4}\)x (hs)
Tổng khối đất 3 khối đào được là: 1,2x + 1,4.3x + 1,6. \(\frac{15}{4}\).x = 11,4. x (m3)
Theo đề bài: 11,4 .x = 912 => x = 912 : 11,4 = 80
Vậy hs khối 7 là 80 hs
Khối 8 là 240 hs
Khối 9 là: 300 hs
Số học sinh khối 7 là 128 học sinh
Số học sinh khối 8 là 384 học sinh
Số học sinh khối 9 là 480 học sinh
a) (x-1)(x+6)
b) (5x-1)(y+x)
c) -(6x^2-7cx+2)
Câu 1:
a. x4 + 2x3 + x2 = x2(x2 + 2x + 1) = x2(x + 1)2
b. x3 – x + 3x2y + 3xy2 + y3 – y
= (x3 + 3x2y + 3xy2 + y3) – (x + y) = (x + y)3 – (x + y)
= (x + y)[(x + y)2 – 1] = (x + y)(x + y + 1)(x + y - 1)
c. 5x2 – 10xy + 5y2 – 20z2 = 5(x2 – 2xy + y2 – 4z2)
= 5[(x2 – 2xy + y2) – 4z2] = 5[(x – y)2 – (2z)2]
= 5(x – y + 2z)(x – y – 2z)
Câu 2:
+) Ta có: a3 + b3 = (a + b)3 – 3ab(a + b)
Thật vậy, VP = (a+ b)3 – 3ab (a + b)
= a3 + 3a2b + 3ab2 + b3 – 3a2b – 3ab2
= a3 + b3 = VT
Nên a3 + b3 + c3 = (a + b)3 – 3ab(a + b) + c3(1)
Ta có: a + b + c = 0 ⇒ a + b = - c (2)
Thay (2) vào (1) ta có:
a3 + b3 + c3 = (-c)3 – 3ab(-c) + c3 = -c3 + 3abc + c3 = 3abc
Vế trái bằng vế phải nên đẳng thức được chứng minh.