Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thay x=1 vào đa thức P(x) có:
P(1)= 1^3-3x1+2=-2+2=0
==> 1 là nghiệm của đa thức P(x)
Vậy 1 là nghiệm của đa thức P(x) (đbđcm)
b) bạn phân tích ra rồi đặt đa thức đó bằng 0 là ok
Ta có : P(1) = 13 - 3.1 + 2 = -2 + 2 = 0
Vậy x = 1 là 1 nghiệm của đa thức P(x)
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
có: 2(x-3)^2 >hoặc = 0 với mọi x
suy ra: 2(x-3)^2+5 >hoặc = 5 với mọi x
suy ra: P(x) > 0 với mọi x
suy ra: đa thức không có nghiệm (đpcm)
giả sử
=> P(x)=2(x-3)^2+5=0
=> 2(x-3)^2=-5
=> (x-3)^2=-2.5
vì (x-3)^2 lớn hơn hoặc bằng 0 nên x ko tồn tại
=> đa thức trên vô nghiệm
a) Thay \(x=\frac{1}{2}\) vào đa thức với \(a=-\frac{1}{2};b=4\) ta có :
\(f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^3+\left(-\frac{1}{2}\right)\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+2=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của đa thức.
b) Theo bài ta có :
\(\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1+a-b+2=0\\\left(-2\right)^3+a.\left(-2\right)^2-\left(-2\right).b+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=-3\\4a+2b=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-2b=-6\\4a+2b=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=3\end{matrix}\right.\)
c) Theo câu b) ta có : \(f\left(x\right)=x^3-3x+2\)
Để \(f\left(x\right)=x+2\Leftrightarrow x^3-3x+2=x+2\)
\(\Leftrightarrow x^3-4x=0\)
\(\Leftrightarrow x.\left(x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm2\end{matrix}\right.\)
a) Cho \(A\left(x\right)=0\)
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(\frac{1}{3}\)là nghiệm của đa thức
b) Đề sai, vì đa thức trên có nghiệm!
Câu 1:
Ta có:
\(P\left(x\right)=x^2+2x+2\\ P\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+1\\ P\left(x\right)=x\left(x+1\right)+\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\)
nên\(\left(x+1\right)^2+1\ge1\)
\(\Rightarrow P\left(x\right)\ge1\ne0\)
Vậy đa thức \(P\left(x\right)\) không có nghiệm
Câu 2:
Ta có:
\(\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2+5\ge5\ne0\\ \Rightarrow P\left(x\right)\ne0\)
Vậy đa thức \(P\left(x\right)\) không có nghiệm.