K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 2 2020

a/ Để pt có 2 nghiệm âm pb:

\(\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(9m-5\right)>0\\x_1+x_2=-2\left(m+1\right)< 0\\x_1x_2=9m-5>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-7m+6>0\\m>-1\\m>\frac{5}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{5}{9}< m< 1\\m>6\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\\x_1+x_2=\frac{2m}{m-2}>0\\x_1x_2=\frac{m+3}{m-2}>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne2\\-m+6>0\\\frac{m}{m-2}>0\\\frac{m+3}{m-2}>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -3\\2< m< 6\end{matrix}\right.\)

NV
18 tháng 2 2020

c/ Để pt có 2 nghiệm trái dấu:

\(\Leftrightarrow ac< 0\)

\(\Leftrightarrow\left(m-\sqrt{5}\right)\left(m+1\right)< 0\)

\(\Rightarrow-1< m< \sqrt{5}\)

Trường hợp 1: m=0

Phương trình sẽ là:

\(0x^2-2\cdot\left(0-1\right)x+0-3=0\)

=>2x-3=0

hay x=3/2

=>Phương trình có đúng một nghiệm dương, còn hai trường hợp còn lại thì ko đúng

Trường hợp 2: m<>0

a: 

Để phương trình có hai nghiệm trái dấu thì m(m-3)<0

hay 0<m<3

b:\(\Delta=\left(2m-2\right)^2-4m\left(m-3\right)\)

\(=4m^2-8m+4-4m^2+12m\)

=4m+4

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m>-1\\\dfrac{2\left(m-1\right)}{m}>0\\\dfrac{m-3}{m}>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1< m< 0\\m>3\end{matrix}\right.\)

16 tháng 2 2016

lớp mấy 

Đặt \(a=x^2\left(a>=0\right)\)

pt trở thành \(a^2+\left(1-2m\right)a+m^2-1=0\)

\(\text{Δ}=\left(1-2m\right)^2-4\left(m^2-1\right)\)

\(=4m^2-4m+1-4m^2+4=-4m+5\)

a: Để pt vô nghiệm thì -4m+5<0

hay m>5/4

b: Để phương trình có hai nghiệm phân biệt thì -4m+5>0

hay m<5/4

c: Để pt có 4 nghiệm phân biệt thì 

\(\left\{{}\begin{matrix}m< \dfrac{5}{4}\\-2m+1>0\\m^2-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -1\\\dfrac{1}{2}< m< 1\end{matrix}\right.\)

18 tháng 2 2016

a) x4 + (1 - 2m)x2 + m2 - 1 = 0 (1)

Đặt t=x2 ta dc PT: t2+(1-2m)t+m2-1=0(2)

Để PT (1) thì PT(2) vô nghiệm:

Để PT(2) vô nghiệm thì: \(\Delta=\left(1-2m\right)^2-4.\left(m^2-1\right)<0\Leftrightarrow1-4m+4m^2-4m^2+4<0\)

<=>5-4m<0

<=>m>5/4

b)Để PT(1) có 2 nghiệm phân biệt thì PT(2) có duy nhất 1 nghiệm

Để PT(2) có duy nhất 1 nghiệm thì:

\(\Delta=5-4m=0\Leftrightarrow m=\frac{5}{4}\)

c)Để PT(1) có 4 nghiệm phân biệt thì PT(2) có 2 nghiệm phân biệt:

Để PT(2) có 2 nghiệm phân biệt thì:

\(\Delta=5-4m\ge0\Leftrightarrow m\le\frac{5}{4}\)

Mem đây ko rành lắm sai bỏ qua

30 tháng 11 2022

Bài 3:

a: Để pt có hai nghiệm trái dấu thì m+5<0

=>m<-5

b: \(\text{Δ}=\left(m+2\right)^2-4\left(m+5\right)\)

\(=m^2+4m+4-4m-20=m^2-16\)

Để phương trình có hai nghiệm phân biệt thì m^2-16>0

=>m>4 hoặc m<-4

c: x1^2+x2^2=23

=>(x1+x2)^2-2x1x2=23

=>(m+2)^2-2(m+5)=23

=>m^2+4m+4-2m-10-23=0

=>m^2+2m-29=0

hay \(m=-1\pm\sqrt{30}\)

d: Để pt có hai nghiệm âm phân biệt thì

\(\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\m+2< 0\\m+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\-5< m< -2\end{matrix}\right.\Leftrightarrow m\in[-4;-2)\)