K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4: Tìm số dư của phép chia cho 9. CHIA9.PAS Cho một số nguyên dương N có M chữ số. Yêu cầu: Tìm số dư của phép chia số N cho 9. Dữ liệu vào: Cho trong file văn bản CHIA9.INP, có cấu trúc như sau: - Dòng 1: Ghi số nguyên dương M là số lượng chữ số của số N (1 ≤ M ≤ 100). - Dòng 2: Ghi M chữ số của số N, các chữ số được ghi liền nhau. Dữ liệu ra: Ghi ra file văn bản CHIA9.OUT, theo cấu trúc như...
Đọc tiếp

Bài 4: Tìm số dư của phép chia cho 9. CHIA9.PAS Cho một số nguyên dương N có M chữ số. Yêu cầu: Tìm số dư của phép chia số N cho 9. Dữ liệu vào: Cho trong file văn bản CHIA9.INP, có cấu trúc như sau: - Dòng 1: Ghi số nguyên dương M là số lượng chữ số của số N (1 ≤ M ≤ 100). - Dòng 2: Ghi M chữ số của số N, các chữ số được ghi liền nhau. Dữ liệu ra: Ghi ra file văn bản CHIA9.OUT, theo cấu trúc như sau: - Dòng 1: Ghi số nguyên dương Q, là số dư tìm được. Ví dụ: CHIA9.INP CHIA9.OUT 5 74283 6

Bài 5: Tìm số sát sau - SOSATSAU.PAS Cho số tự nhiên A có N chữ số. Hãy hoán vị các chữ số trong A để thu được số B thoả mãn đồng thời hai điều kiện sau: - B lớn hơn A. - B nhỏ nhất. Dữ liệu vào: Cho trong file SOSATSAU.INP có cấu trúc như sau: - Dòng 1: Ghi số N là số lượng chữ số của A (0a[i-1]. Do đoạn cuối giảm dần, điều này thực hiện bằng cách tìm từ cuối dãy lên đầu gặp chỉ số k đầu tiên thỏa mãn a[k]>a[i-1] (có thể dùng tìm kiếm nhị phân) - Đảo giá trị a[k] và a[i-1] - Lật ngược thứ tự đoạn cuối giảm dần (từ a[i] đến a[k]) trở thành tăng dần + Nếu không tìm thấy tức là toàn dãy đã sắp xếp giảm dần, đây là hoán vị cuối cùng.

Bài 2. MẬT KHẨU. Cu Tí thường xuyên tham gia thi lập trình trên mạng. Vì đạt được thành tích cao nên Tí được gửi tặng một phần mềm diệt virus. Nhà sản xuất phần mềm cung cấp cho Tí một mã số là một dãy gồm các bộ ba chữ số ngăn cách nhau bởi dấu chấm và có chiều dài không quá 255 (kể cả chữ số và dấu chấm). Để cài đặt được phần mềm, Tí phải nhập vào mật khẩu của phần mềm. Mật khẩu là một số nguyên dương M được tạo ra bằng cách tính tổng giá trị các bộ ba chữ số trong dãy mã số, các bộ ba này được đọc từ phải sang trái. - Yêu cầu: Cho biết mã số của phần mềm, hãy tìm mật khẩu của phần mềm đó. - Dữ liệu vào: Cho từ tệp văn bản có tên BL2.INPgồm một dòng chứa xâu ký tự S (độ dài xâu không quá 255 ký tự) là mã số của phần mềm. - Kết quả: Ghi ra tệp văn bản có tên BL2.OUTgồm một số nguyên là mật khẩu tìm được. MK.INP MK.OUT 123.234 257

Bài 6: Biến đổi số BIENDOI.PAS Cho một số nguyên dương M có K chữ số (0 < M; 1 ≤ K ≤ 200). Người ta thực hiện biến đổi số M bằng cách xóa đi trong M các chữ số 0 và sau đó sắp xếp các chữ số còn lại theo thứ tự không giảm của giá trị từng chữ số. Gọi số nguyên dương N là số thu được sau khi thực hiện biến đổi số M. Yêu cầu: Hãy tìm số nguyên dương N. Dữ liệu vào: Nhập vào từ tệp biendoi.inp số M Dữ liệu ra: Ghi ra tệp biendoi.out số N Ví dụ: M=3880247 N=234788

0
19 tháng 9 2016

Ta xét : \(\left(n-1\right).n.\left(n+1\right)\left(n+2\right)+1=\left[\left(n-1\right)\left(n+2\right)\right].\left[n\left(n+1\right)\right]+1\)

\(=\left(n^2+n+2\right)\left(n^2+n\right)+1=\left(n^2+n\right)^2+2\left(n^2+n\right)+1=\left(n^2+n+1\right)^2\)

Suy ra \(A=12\sqrt{\left(n^2+n+1\right)^2}+23=12\left(n^2+n+1\right)+23=\left(2n+1\right)^2+\left(2n-3\right)^2+\left(2n+5\right)^2\)

em ko rõ lớp nào làm được bài toán này nên em chỉ chọn đại 1 lớp thôi, bài toán này chỉ thuộc dạng giải phương trình thôi nhưng em thấy khó quá -_-có biến x và tập hợp dãy số nguyên K ( K[1], K[2], K[3], ... , K[n])có tập hợp dãy số nguyên mod (mod[1], mod[2], mod[3], ..., mod[n]) với mỗi phần tử trong tập hợp mod đc tính theo công thức:mod[i] = k[i] % x ( % là phép toán chia lấy phần dư, i là chỉ số...
Đọc tiếp

em ko rõ lớp nào làm được bài toán này nên em chỉ chọn đại 1 lớp thôi, bài toán này chỉ thuộc dạng giải phương trình thôi nhưng em thấy khó quá -_-

có biến x và tập hợp dãy số nguyên K ( K[1], K[2], K[3], ... , K[n])

có tập hợp dãy số nguyên mod (mod[1], mod[2], mod[3], ..., mod[n]) với mỗi phần tử trong tập hợp mod đc tính theo công thức:

mod[i] = k[i] % x ( % là phép toán chia lấy phần dư, i là chỉ số phần tử tương ứng có trong K và mod).

có tập hợp dãy số nguyên int (int[1], int[2], int[3], ..., int[n]) với mỗi phần tử trong tập hợp int đc tính theo công thức:

mod[i] = k[i] / x ( / là phép toán chia lấy phần nguyên, i là chỉ số phần tử tương ứng có trong K và int).

smod là tổng của các phần tử có trong tập hợp mod ( smod = mod[1] + mod[2] + mod[3] + ... + mod[n] )

sint là à tổng của các phần tử có trong tập hợp int (sint = int[1] + int[2] + int[3] +  ... + int[n])

T đc tính theo công thức sau : \(T = smod - sint - 12 * n\) (n là số phần tử của K như ở trên).

Ví dụ: có x = 922, tập hợp K có : K[1] = 3572 , K[2] = 3427 , K[3] = 7312 thì ta có:

mod[1] = 806, mod[2] = 661, mod[3] = 858

int[1] = 3, int[2] = 3, int[3] = 7

từ đó có smod = 2325 và sint = 13

K có 3 phần tử nên n = 3, từ đó có T =

T = 2325 - 13 - 12*3 = 2276

Giờ em đã có T và tập hợp K, tức là đã biết T và K[1], K[2], K[3], ..., K[n], lập công thức tính x

Em phải làm thế nào ạ ?

 

0
NV
26 tháng 12 2020

1.

\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)

\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)

\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)

Đặt \(xy=a\Rightarrow0< a\le1\)

\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)

\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)

\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)

\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)

\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)

\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)

Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)

NV
26 tháng 12 2020

2.

Đặt \(A=9^n+62\)

Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)

Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)

\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)

Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\)  và \(6m+1\)

\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)

\(\Leftrightarrow36m^2=9^n+63\)

\(\Leftrightarrow4m^2=9^{n-1}+7\)

\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)

\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)

Pt ước số cơ bản, bạn tự giải tiếp

1. Tổng các hệ số của đa thức là: 12004.22005=22005

2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.

Nhận thấy x = 1 không là nghiệm của phương trình .

Nhân cả hai vế của pt cho (x−1)≠0 được : 

(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)

Vậy pt trên vô nghiệm.

25 tháng 2 2018

1. Tổng các hệ số của đa thức là: 

12014 . 22015 = 22015

2 . Cần chứng minh. 

\(x4 + x3 + x2 + x + 1 = 0\)

Vô nghiệm. 

Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình. 

Nhân cả hai vế của phương trình cho:

\(( x - 1 ) \) \(\ne\) \(0\) được :

\(( x-1). (x4+x3+x2+x+1)=0\)

\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)

Vô lí. 

Vậy phương trình trên vô nghiệm. 

31 tháng 7 2020

ta có tích từ 3 stn liên tiếp trở lên thì chia hết cho 3

theo đề bài 9n+11 là tích k số tự nhiên liên tiếp mà 9n+11 không chia hết cho 3 nên k=2

đặt 9n+11=a(a+1) với a là số nguyên dương

9n+11=a(a+1) <=> 4.9n+45=4a2+4a+1

<=> (2a+1)2-(2.3n)2=45 <=> (2a+1-2.3n)(2a+1+2.3n)=45

vì a,n nguyên dương và 2a+1+2.3n >=9 nên xảy ra các trường hợp sau

th1: \(\hept{\begin{cases}2a+1+2\cdot3^n=9\left(1\right)\\2+1+2\cdot3^n=5\left(2\right)\end{cases}}\)

từ (1) và (2) ta có 4a+2=14 <=> a=3 => 9n+11=12 <=> 9n=1 <=> n=0 (loại)

th2: \(\hept{\begin{cases}2a+1-2\cdot3^n=15\left(3\right)\\2a+1+2\cdot3^n=3\left(4\right)\end{cases}}\)

từ (3) và (4) ta có 4a+2=18 <=> a=4 => 9n+11=20 <= 9n=9 <=> n=1 (tm)

th3: \(\hept{\begin{cases}2a+1-2\cdot3^n=45\left(5\right)\\2a+1+2\cdot3^n=1\left(6\right)\end{cases}}\)

từ (5) và (6) ta có 4a+2=46 <=> a=11 => 9n+11=132 <=> 9n=121 => không tồn tại n

vậy n=1

1 tháng 8 2020

Vì \(9^n+11⋮̸3\)nên k<3 => k=2 (k>1) (với n thuộc N*)

Ta có: \(9^n-1⋮\left(9-1\right)\Leftrightarrow9^n-1⋮8\Leftrightarrow9^n-1⋮4\Leftrightarrow9^n+11⋮4\)

Mà \(9^n+11\)là tích của hai STN liên tiếp nên 1 trong 2 số bằng 4, số còn lại là 5 (vì 9^n+11 không chia hết cho 3)

Từ đó, ta có 9^n+11=4*5=20 => 9^n=9 => n=1