K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 2 2020

c/ \(\left\{{}\begin{matrix}m< 0\\26+5m< 0\end{matrix}\right.\) \(\Rightarrow m< -\frac{26}{5}\)

d/ Biểu thức có vấn đề, sao x lại nằm trong căn thế kia? Nếu vậy thì đây đâu phải tam thức bậc 2, nó là hàm vô tỉ rồi

f/ \(\left\{{}\begin{matrix}m-2< 0\\\Delta'=\left(m-3\right)^2-\left(m-2\right)\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\-3m+7< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m< 2\\m>\frac{7}{3}\end{matrix}\right.\)

Không tồn tại m thỏa mãn

NV
18 tháng 2 2020

a/ \(\left\{{}\begin{matrix}m-4< 0\\\Delta=\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\-7m^2+38m-15< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \frac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< \frac{3}{7}\)

b/ \(\left\{{}\begin{matrix}m+2< 0\\25+16\left(m+2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\16m< -57\end{matrix}\right.\) \(\Rightarrow m< -4\)

NV
18 tháng 2 2020

Để các biểu thức luôn dương:

a/ \(\Delta'=4-\left(m-5\right)< 0\Leftrightarrow9-m< 0\Rightarrow m>9\)

b/ \(\Delta=\left(m+2\right)^2-4\left(8m+1\right)< 0\)

\(\Leftrightarrow m^2-28m< 0\Rightarrow0< m< 28\)

c/ \(\Delta'=4-\left(m-2\right)^2< 0\Leftrightarrow-m^2+4m< 0\Rightarrow\left[{}\begin{matrix}m< 0\\m>4\end{matrix}\right.\)

d/ Do hệ số \(a=-1< 0\) nên ko tồn tại m thỏa mãn

e/ Tương tự câu trên, ko tồn tại m thỏa mãn

f/ \(\left\{{}\begin{matrix}m-2>0\\\Delta'=\left(m-3\right)^2-\left(m-2\right)\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>2\\-3m+7< 0\end{matrix}\right.\) \(\Rightarrow m>\frac{7}{3}\)

8 tháng 5 2020

giúp mình 3 câu nữa đi

NV
7 tháng 5 2020

Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)

a/ \(1\left(m+1\right)< 0\Rightarrow m< -1\)

b/ \(-3\left(4-m^2\right)< 0\Leftrightarrow m^2-4< 0\Rightarrow-2< m< 2\)

c/ \(\left(m-1\right)\left(m^2+4m-5\right)< 0\)

\(\Leftrightarrow\left(m-1\right)^2\left(m+5\right)< 0\Rightarrow m< -5\)

d/ \(\left(m+1\right)\left(m+1\right)< 0\Leftrightarrow\left(m+1\right)^2< 0\)

\(\Rightarrow\) Ko tồn tại m thỏa mãn

e/ \(2m\left(-m^2-2m+3\right)< 0\)

\(\Leftrightarrow2m\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}-3< m< 0\\m>1\end{matrix}\right.\)

f/ \(4\left(2m^2-5m+2\right)< 0\Rightarrow\frac{1}{2}< m< 2\)

g/ \(\left(6-m\right)\left(-m^2-2m+3\right)< 0\)

\(\Leftrightarrow\left(6-m\right)\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}m< -3\\1< m< 6\end{matrix}\right.\)

h/ \(m\left(2m-1\right)< 0\Rightarrow0< m< \frac{1}{2}\)

NV
7 tháng 5 2020

g/

\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(m-2\right)^2-\left(m-2\right)\ge0\\\frac{1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\\left(m-2\right)\left(m-3\right)\ge0\\m>2\end{matrix}\right.\)

\(\Rightarrow m\ge3\)

h/

\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\\\frac{5m-6}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-m^2+4m-3\ge0\\\left[{}\begin{matrix}m>2\\m< \frac{6}{5}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}1\le m< \frac{6}{5}\\2< m\le3\end{matrix}\right.\)

NV
7 tháng 5 2020

d/

\(\left\{{}\begin{matrix}\Delta'=4\left(2m-1\right)^2-4m\ge0\\\frac{m}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-5m+1\ge0\\m>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0< m< \frac{1}{4}\\m>1\end{matrix}\right.\)

e/

\(\left\{{}\begin{matrix}\Delta=\left(m+1\right)^2-4\left(m-1\right)\ge0\\m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+5\ge0\\m>1\end{matrix}\right.\) \(\Rightarrow m>1\)

f/

\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-4\left(m-1\right)\ge0\\\frac{m-1}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5\ge0\\m>1\end{matrix}\right.\) \(\Rightarrow m\ge5\)

NV
18 tháng 2 2020

a/ \(\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m-1\right)^2-3\left(m-1\right)\left(m+1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\-m^2-m+2\le0\end{matrix}\right.\) \(\Rightarrow m\ge1\)

b/ \(\left\{{}\begin{matrix}m^2+4m-5< 0\\\Delta'=\left(m-1\right)^2-2\left(m^2+4m-5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m-5< 0\\-m^2-10m+11\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-5< m< 1\\\left[{}\begin{matrix}m\le-11\\m\ge1\end{matrix}\right.\end{matrix}\right.\)

Không tồn tại m thỏa mãn

NV
18 tháng 2 2020

c/ Do \(x^2-8x+20=\left(x-4\right)^2+4>0\) \(\forall x\) nên BPT nghiệm đúng với mọi x khi mẫu số âm với mọi x

\(\Rightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m+1\right)^2-m\left(9m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-8m^2-2m+1< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m< -\frac{1}{2}\\m>\frac{1}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -\frac{1}{2}\)

d/ Do \(3x^2-5x+4>0\) \(\forall x\) nên BPT luôn đúng khi:

\(\left\{{}\begin{matrix}m-4>0\\\left(m+1\right)^2-4\left(2m-1\right)\left(m-4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\-7m^2+38m-15< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \frac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>5\)

7 tháng 5 2020

giúp mình mấy bài nữa đi

\n
NV
7 tháng 5 2020

d/

\(\left\{{}\begin{matrix}m\ne0\\\Delta'=\left(m-1\right)^2-m\left(m-3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m+1< 0\end{matrix}\right.\)

\(\Rightarrow m< -1\)

e/

\(\Delta=\left(m+1\right)^2-4\left(m-1\right)< 0\)

\(\Leftrightarrow m^2-2m+5< 0\)

\(\Leftrightarrow\left(m-1\right)^2+4< 0\)

Không tồn tại m thỏa mãn

f/

\(m=1\) pt vô nghiệm (thỏa mãn)

Với \(m\ne1\)

\(\Delta'=\left(m-1\right)^2+\left(m-1\right)< 0\)

\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)

Vậy \(0< m\le1\)

a: Ta có: \(\left(x+1\right)^2=0\)

=>x+1=0

hay x=-1

Thay x=-1 vào \(mx^2-\left(2m+1\right)x+m=0\), ta được:

m+2m+1+m=0

=>3m=-1

hay m=-1/3

b:x+2=0

nên x=-2

Thay x=-2 vào \(\dfrac{mx}{x+3}+3m-1=0\), ta được:

\(\dfrac{-2m}{-2+3}+3m-1=0\)

=>-2m+3m-1=0

=>m=1

d: 3x-2=0

=>x=2/3

Thay x=2/3 vào (m+3)x-m+4=0, ta được:

\(\dfrac{2}{3}\left(m+3\right)-m+4=0\)

\(\Leftrightarrow\dfrac{2}{3}m+2-m+4=0\)

=>6-1/3m=0

=>1/3m=6

hay m=18

30 tháng 12 2022

Bài 3:

a: TH1: m=-2

=>-2(-2-1)x+4<0

=>6x+4<0

=>x<-4/6(loại)

TH2: m<>-2

\(\text{Δ}=\left(2m-2\right)^2-16\left(m+2\right)\)

=4m^2-8m+4-16m-32

=4m^2-24m-28

Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}4m^2-24m-28< =0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< =m< =7\\m>-2\end{matrix}\right.\Leftrightarrow-1< =m< =7\)

b: TH1: m=3

=>5x-4>0

=>x>4/5(loại)

TH2: m<>3

Δ=(m+2)^2-4*(-4)(m-3)

\(=m^2+4m+4+16m-48=m^2+20m-44\)

Để bất phương trình vô nghiệm thì

\(\left\{{}\begin{matrix}m^2+20m-44< =0\\m-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-22< =m< =2\\m< 3\end{matrix}\right.\Leftrightarrow-22< =m< =2\)