K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2019

Bài 3:

23 tháng 10 2019

Thanks bn

23 tháng 7 2018

Bài 1: 

\(\widehat{A}\div\widehat{B}\div\widehat{C}=1\div2\div3=\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}\)

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (Tổng ba góc của một tam giác)

Áp dụng t/d dãy tỉ số bằng nhau, ta có: \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\frac{180^0}{6}=30\)

\(\Rightarrow\widehat{A}=30.1=30^0\)

     \(\widehat{B}=30.2=60^0\)

     \(\widehat{C}=30.3=90^0\)

Vậy .....

23 tháng 7 2018

Bài 2: 

Gọi số đo các góc của tam giác ABC lần lượt là: a;b;c (\(a;b;c\inℕ^∗\) )

Ta có: \(a-b=18^0\Rightarrow a=18+b\)

          \(b-c=18^0\Rightarrow c=b-18\)

Trong tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

                      \(\Leftrightarrow a+b+c=180^0\)

                       \(\Leftrightarrow18+b+b+b-18=180^0\)

                        \(\Leftrightarrow3b=180^0\Rightarrow b=60\Rightarrow\widehat{B}=60^0\)

                          \(\Rightarrow\widehat{A}=18^0+\widehat{B}=18^0+60^0=78^0\)

                          \(\Rightarrow\widehat{C}=180^0-60^0-78^0=42^0\)

Vậy .....

Câu 1: 

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

Do đo: ΔABE=ΔHBE

b: Ta có:BA=BH

EA=EH
Do đó:BE là đường trung trực của AH

c: Ta có: EA=EH

mà EH<EC

nên EA<EC

12 tháng 9 2017

Câu 1

a.

Xét \(\Delta ABC\) có :

\(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^o\) ( định lý tổng 3 góc của 1 \(\Delta\) )

\(\Rightarrow\widehat{BCA}=40^o\) (1)

Ta có Ax là tia đối của AB

suy ra \(\widehat{BAC}+\widehat{CAx}=180^o\)

\(\widehat{CAx}=80^o\)

lại có Ay là tia phân giác \(\widehat{CAx}\)

\(\Rightarrow\widehat{xAy}=\widehat{yAc}=\dfrac{\widehat{CAx}}{2}=\dfrac{80^o}{2}=40^o\) (2)

Từ (1)(2) suy ra \(\widehat{yAc}=\widehat{ACB}=40^o\)

mà chúng ở vị trí so le trong

\(\Rightarrow\) Ay//BC

Bài 2

Rảnh làm sau , đến giờ học rồi .

Câu 2: 

Xét ΔABC có \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)

\(\Leftrightarrow\widehat{ACB}+\widehat{ABC}=180^0-\widehat{A}\)

\(\Leftrightarrow\widehat{OBC}+\widehat{OCB}=90^0-\dfrac{1}{2}\widehat{A}\)

Xét ΔBOC có \(\widehat{BOC}+\widehat{OBC}+\widehat{OCB}=180^0\)

\(\Leftrightarrow\widehat{BOC}=180^0-90^0+\dfrac{1}{2}\widehat{A}=90^0+\dfrac{\widehat{A}}{2}\)

a: \(\widehat{BAC}=180^0-70^0-30^0=80^0\)

=>\(\widehat{CAD}=40^0\)

\(\widehat{ADC}=180^0-40^0-30^0=110^0\)

b: \(\widehat{B}-\widehat{C}=40^0\)

nên \(\widehat{B}=\widehat{C}+40^0\)

Ta có: \(\widehat{ABD}+\widehat{ADB}+\widehat{BAD}=\widehat{ACD}+\widehat{ADC}+\widehat{CAD}\)

\(\Leftrightarrow\widehat{C}+40^0+\widehat{ADB}=\widehat{C}+\widehat{ADC}\)

\(\Leftrightarrow\widehat{ADB}-\widehat{ADC}=-40^0\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)

nên \(-2\cdot\widehat{ADC}=\dfrac{-40^0-180^0}{2}=-110^0\)

hay \(\widehat{ADC}=55^0\)