K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

2/Áp dụng bất đẳng thức cô si, ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{\left(a+b+c\right)}{3}}=\frac{9}{a+b+c}=9^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Bài 1:

a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

Do đó: ΔBAC đồng dạng với ΔBHA

b: Xét ΔBAC vuông tại A có AH là đường cao

nên \(HA^2=HB\cdot HC\)

c: Ta có: ΔHAB vuông tạiH

mà HM là đường trung tuyến

nên HM=AM

TA có: ΔHAC vuông tại H

mà HNlà đường trung tuyến

nên HN=AN

Xét ΔNAM và ΔNHM có

NA=NH

AM=HM

NM chung

Do đó: ΔNAM=ΔNHM

Suy ra: góc NAM=góc NHM=90 độ

=>NAMH là tứ giác nội tiếp đường kính NM

=>O là trung điểm của NM

Bài 3: 

a: Gọi K la trung điểm của DC

Xét ΔBDC có M,K lần lượt là trung điểm của CB và CD

nên MK là đường trung bình

=>MK//BD và MK=1/2BD

Xét ΔAMK có DI//MK

nên DI/MK=AD/AK=1/2

=>D là trung điểm của AK

=>AD=DK=KC

=>AD=1/2DC

b: MK=1/2BD

mà MK=2ID

nên 2ID=1/2BD

=>ID/BD=1/4

=>BD/ID=4

3 tháng 7 2019

Câu 2 (Bổ Sung) : Chứng minh tam giác đã cho là tam giác đều

3 tháng 3 2018

kết bạn mình nghe

  
  
  
5 tháng 4 2019

b) + Xét Δ ABC có \(\widehat{BAC}=90\text{°}\)

\(\Rightarrow\) \(BC^2=AB^2+AC^2\) ( định lý Pytago )

\(\Rightarrow\) \(BC^2=6^2+8^2\)

\(\Rightarrow\) \(BC^2=100\)

\(\Rightarrow\) BC = 10 ( cm )

+ Δ HBA \(\sim\) Δ ABC ( cmt )

\(\Rightarrow\) \(\frac{AH}{AC}=\frac{AB}{BC}\)

\(\Rightarrow\) \(\frac{AH}{8}=\frac{6}{10}\)

\(\Rightarrow\) AH = 4,8 cm

5 tháng 4 2019

a) + Δ ABC và Δ HBA có

\(\widehat{CAB}=\widehat{AHB}=90\text{°}\)

\(\widehat{B}\) góc chung

\(\Rightarrow\) Δ ABC ∼ Δ HBA ( g.g )

+ Δ AHC ∼ Δ BAC ( g.g ) (cmtt)

+ Vì Δ ABC ∼ Δ HBA ( cmt )

Δ AHC ∼ Δ BAC ( cmt )

\(\Rightarrow\) Δ AHC ∼ Δ BHA ( t/c Δ ∼ )

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0
9 tháng 5 2018

Bài 1:

C A B E H D

Ta có: \(\widehat{ACB}+\widehat{ABC}=90^o\)

Xét: \(\Delta ABC\text{ và }\widehat{NBA}\)

      \(\widehat{CAB}=\widehat{ANB}=90^o\)

\(\Rightarrow\Delta ABC~\Delta AHB\)

b) \(\frac{AB}{NB}=\frac{AC}{NA}\)

\(\Leftrightarrow\frac{AB}{AC}=\frac{NB}{NA}\left(1\right)\)

Chứng minh tương tự: 

\(\Delta ABC~\Delta AHB\)

\(\frac{AN}{AB}-\frac{HC}{AC}\Rightarrow\frac{AB}{AC}=\frac{AN}{NC}\left(2\right)\)

\(\text{Từ (1) và (2) }\Rightarrow\frac{NB}{NA}=\frac{NA}{NC}\Rightarrow AB^2=BH.BC\left(đ\text{pcm}\right)\)

Xét tam giác vuông.

Áp dụng định lý Pi-ta-go, ta có: 

\(DB^2=AB^2+AD^2=6^2+8^2=100\)

\(\Rightarrow DB=\sqrt{100}=10\left(cm\right)\)

Bài 2: 

1 1 2 2 A B C D

a) Xét \(\Delta OAV\text{ và }\Delta OCD\)

Có: \(\widehat{AOB}=\widehat{COD}\left(đ^2\right)\)

     \(\widehat{A_1}=\widehat{C_1}\left(\text{so le}\right)\)

\(\Rightarrow\Delta OAB~\Delta OCD\)

\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\Rightarrow\frac{DO}{DB}=\frac{CO}{CA}\)

b) Ta có: \(AC^2-BD^2=DC^2-AB^2\)

\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)

\(\Delta\text{ vuông }ABC\left(\text{theo định lý Pi-ta-go}\right)\)

\(AC^2-DC^2=AD^2\left(1\right)\)

\(\Delta\text{ vuông }BDA\text{ có }\left(\text{theo định lý Pi-ta-go}\right)\)

\(BD^2-AB^2=AD^2\)

\(\text{Từ (1) và (2) }\Rightarrowđ\text{pcm}\)

9 tháng 5 2018

cảm ơn bạn nhé