K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

Bài 1: Tổng số tiền điện phải trả của ba hộ sử dụng điện trong một tháng là 550 000 đồng. Biết rằng số điện năng tiêu thụ của ba hộ tỉ lệ với 5; 7; 8. Tính số tiền điện mỗi hộ phải trả trong tháng đó.

=> Gọi số tiền điện phải trả của ba hộ lần lượt là x, y, z và x, y, z tỉ lệ với 5, 7, 8(x, y, z thuộc N*)

Theo đề bài ta có : \(\dfrac{x}{5}=\dfrac{y}{7} = \dfrac{z}{8}\)\(x+y+z=550000 \)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được :

=> \(\begin{cases} x=27500.5 137500 \\ y = 27500.7=192500 \\ z= 27500.8=220000 \end{cases}\)

Vậy số tiền điện phải trả của ba hộ lần lượt là 137500 đồng, 192500 đồng, 220000 đồng

Bài 1: Tổng số tiền điện phải trả của ba hộ sử dụng điện trong một tháng là 550 000 đồng. Biết rằng số điện năng tiêu thụ của ba hộ tỉ lệ với 5; 7; 8. Tính số tiền điện mỗi hộ phải trả trong tháng đó.

Gọi số tiền điện phải trả của 3 hộ sử dụng điện lần lượt là x,y,z (x,y,z\(\in\)N*)

Theo đề bài ta có:

- Tổng số tiền 3 hộ phải trả trong 1 tháng là 550000 đồng \(\Rightarrow\)x+y+z=550000

- Số điện năng tiêu thụ của 3 hộ tỉ lệ với 5,7,8\(\Rightarrow\)\(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được :

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}=\frac{x+y+z}{5+7+8}=\frac{550000}{20}=27500\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{5}=27500\Rightarrow x=27500.5=137500\\\frac{y}{7}=27500\Rightarrow y=27500.7=192500\\\frac{z}{8}=27500\Rightarrow z=27500.8=220000\end{matrix}\right.\)

Vậy số tiền điện 3 hộ phải trả lần lượt là: 137500, 192500, 220000.

21 tháng 4 2020

cảm ơn bn

4 tháng 12 2016

Gọi số tiền điện mỗi hộ phải trả là: a, b, c ( a, b, c > 0 )

Vì số tiền điện phải trả và số điện tiêu thụ là 2 đại lượng tỉ lệ thuận nên theo đề bài, ta có:

\(\frac{a}{5}=\frac{b}{7}=\frac{c}{8}\) và a + b + c = 550 000

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{5}=\frac{b}{7}=\frac{c}{8}=\frac{a+b+c}{5+7+8}=\frac{550000}{20}=27500\)

Do đó: \(\frac{a}{5}=27500=>a=27500\cdot5=137500\)

\(\frac{b}{7}=27500=>b=27500\cdot7=192500\)

\(\frac{c}{8}=27500=>c=27500\cdot8=220000\)

Vậy số tiền điện ba hộ phải trả là: 137 500; 192 500; 220 000 ( đồng )

8 tháng 9 2016

Gọi số tiền điện phải trả của ba hộ lần lượt là x, y, z và x, y, z tỉ lệ với 5, 7, 8(x, y, z thuộc N*)

Theo đề bài ta có : \(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}\) \(x+y+z=550000\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được

                    \(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}=\frac{x+y+z}{5+7+8}=\frac{550000}{20}=27500\)

\(\Rightarrow\begin{cases}x=27500.5=137500\\y=27500.7=192500\\z=27500.8=220000\end{cases}\)

Vậy số tiền điện phải trả của ba hộ lần lượt là 137500 đồng, 192500 đồng, 220000 đồng

8 tháng 9 2016

undefined

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNHBài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng : a) AE = BC; b)AB // ECBài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BCBài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân...
Đọc tiếp

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNH

Bài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng :

a) AE = BC; b)AB // EC

Bài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BC

Bài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân giác của góc xOy cắt AB ở C. Chứng minh rằng

a) C là trung điểm của AB

b) AB vuông góc với OC

Bài 4: Cho tam giác ABC có AB = AC, M là trung điểm của cạnh BC. Trên tia đối của tia BC và CB lấy tương ứng hai điểm D và E sao cho BD = CE. Chứng minh rằng AM là tia phân giác của góc BAC và DAE

Bài 5: Cho tam giác ABC có góc A = 1000, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA

a) Tính số đo góc ABK

b) về phía ngoài tam giác ABC, vẽ các đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. Chứng minh rằng: tam giác ABK bằng tam giác DAK

c) Chứng minh MA vuông góc với DE

Bài 6: Cho tam giác ABC, D là trung điểm của cạnh AB, E là trung điểm của cạnh AC. Chứng minh rằng DE//BC và DE = 1/2 BC

Bài 7: Cho tam giác ABC vuông tại A, M là trung điểm của BC. Chứng minh rằng AM =1/2BC

Bài 8: Cho tam giác ABC vuông tại A và AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC

a) Chứng minh rằng DE vuông góc với BC

b) Cho biết 4B = 5C trung điểm của BC. Chứng minh rằng :

a) FH = 2DE.

b) FH vuông góc với DE.

3
15 tháng 12 2016

nhìu quá bn à TTvTT

23 tháng 12 2016

từ từ thui

18 tháng 1 2018

sao nhiều v bạn

7 tháng 9 2016

Gọi ba hộ là a,b,c

ta có

a/5=b/7=c/8=a+b+c/5+7+8=550000/20=27500

=>a/5=27500 =>a=137500

=>b/7=27500 =>b=962500

=>c/8=27500 =>c=7700000

Vậy số tiền phải trả là :.....

Chúc bn học tốt

k đúng cho m nha

7 tháng 9 2016

Gọi số tiền điện phải trả của ba hộ lần lượt là x, y, z và x, y, z tỉ lệ với 5, 7, 8(x, y, z thuộc N*)

Theo đề bài ta có : \(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}\)và x+y+z = 550000

Áp dụng tính chất của dãy tỉ số bằng nhau ta được

                     \(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}=\frac{x+y+z}{5+7+8}=\frac{550000}{20}=27500\)

\(\Rightarrow\hept{\begin{cases}x=27500.5=137500\\y=27500.7=192500\\z=27500.8=220000\end{cases}}\)

Vậy số tiền điện phải trả của ba hộ lần lượt là 137500 đồng, 192500 đồng, 220000 đồng

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0