Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi m = 2 : y = x + 5
TXĐ : D = R.
Tính biến thiên :
- a = 1 > 0 hàm số đồng biến trên R.
bảng biến thiên :
x | -∞ | +∞ | |
y | -∞ | +∞ |
Bảng giá trị :
x | 0 | -5 |
y | 5 | 0 |
Đồ thị hàm số y = x + 5 là đường thẳng đi qua hai điểm A(0, 5) và B(-5; 0).
b/(dm) đi qua điểm A(4, -1) :
4 = (m -1)(-1) +2m +1
<=> m = 2
3. hàm số nghịch biến khi : a = m – 1 < 0 <=> m < 1
4.(dm) đi qua điểm cố định M(x0, y0) :
Ta được : y0 = (m -1)( x0) +2m +1 luôn đúng mọi m.
<=> (x0 + 2) m = y0 – 1 + x0(*)
(*) luôn đúng mọi m khi :
x0 + 2= 0 và y0 – 1 + x0 = 0
<=> x0 =- 2 và y0 = 3
Vậy : điểm cố định M(-2, 3)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2-4x+1=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+5=0\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-5\right)=0\\y=2x-4\end{matrix}\right.\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;-2\right);\left(5;6\right)\right\}\)
c: Điểm M,N ở đâu vậy bạn?
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 9cm, CH = 16cm.
Độ dài cạnh AB là: ............. cm.
- 15
Giá trị của biểu thức B2 = ..............
- 5
- 0
- 4
Giá trị của x để biểu thức đạt giá trị lớn nhất là: .............
- -3/2
\(A=x^2-y^2-2y-1\)
\(=x^2-\left(y+1\right)^2=\left(x-y-1\right)\left(x+y+1\right)\)
\(=\left(93-6-1\right)\left(93+6+1\right)=86\cdot100=8600\)
B k hiểu đề là j
1) Gọi tâm I nằm trên đường thẳng d:2x+y-1=0
=> \(I\left(i;1-2i\right)\)
Đường tròn tiếp xúc với 2 đường thẳng lần lượt là d1:2x-y+2=0 và d2: x-y-1=0
<=> \(d\left(I,d_1\right)=d\left(I,d_2\right)\)
<=> \(\frac{\left|2i-\left(1-2i\right)+2\right|}{\sqrt{2^2+1^2}}=\frac{\left|i-\left(1-2i\right)-1\right|}{\sqrt{1^2+\left(-1\right)^2}}\)
<=> \(\frac{1}{\sqrt{5}}=\frac{\left|3i-2\right|}{\sqrt{2}}\)
<=> \(\sqrt{5}\left|3i-2\right|=\sqrt{2}\)
<=> \(5\left(3i-2\right)^2=2\Leftrightarrow5\left(9i^2-12i+4\right)=2\)
=> \(\left[{}\begin{matrix}i=\frac{10+\sqrt{10}}{15}\\i=\frac{10-\sqrt{10}}{15}\end{matrix}\right.\)
=> I\(\left(\frac{10+\sqrt{10}}{15};-\frac{5+2\sqrt{10}}{15}\right)\)
I(\(\frac{10-\sqrt{10}}{15};\frac{-5+2\sqrt{10}}{15}\))
Tìm R = d(I,d1) =d(I;d2) rồi suy ra được phương trình đường tròn nhé!
a) Để (P) đi qua M(1,6) thì:
6 = 12 - (a + 1).1 + a2 -2a + 7
a2 - 3a + 1 = 0
\(a=\frac{3+\sqrt{5}}{2}\) hoặc \(a=\frac{3-\sqrt{5}}{2}\)
b) Thay a tìm được và tự vẽ hình
c) (p) cắt Ox tại hai điểm A,B => xA và xB là hai nghiệm của phương trình:
x2 - (a + 1) x + a2 - 2a + 7 = 0
Theo định lý Viet:
xA2 + xB2 = (xA + xB)2 - 2.xA.xB = (a+1)2 -2(a2 - 2a +7) = ....