K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

Bài 2:

A E B C D F 1 2 1 1 2 2 1 2

Giải:
a) Xét \(\Delta ABD,\Delta EBD\) có:

\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

\(\widehat{A_1}=\widehat{E_1}=90^o\)

BD: cạnh huyền chung

\(\Rightarrow\Delta ABD=\Delta EBD\) ( c.huyền - g.nhọn ) ( đpcm )

b) Gọi giao điểm giữa AE và BD là I

\(\Delta ABD=\Delta EBD\Rightarrow AB=BE\) ( cạnh t/ứng )

\(\Rightarrow AD=DE\) ( cạnh t/ứng )

\(\Rightarrow BD\) là trung trực của AE ( đpcm )

c) Trong \(\Delta DEC\left(\widehat{E_2}=90^o\right)\Rightarrow DC>DE\)

Mà AD = DE ( theo b )

\(\Rightarrow DC>AD\left(đpcm\right)\)

d) Ta có: \(\widehat{D_2}+\widehat{ADE}=180^o\) ( kề bù )

\(\widehat{D_1}=\widehat{D_2}\left(gt\right)\)

\(\Rightarrow\widehat{D_1}+\widehat{ADE}=\widehat{FDE}=180^o\)

\(\Rightarrow E,D,F\) thẳng hàng ( đpcm )

Vậy...

25 tháng 3 2017

có chỗ sai

8 tháng 5 2015

Câu a bạn Quỳnh Như giải sai rồ

Xét tg ACE vuông tại c và tg AKE vuông tại K,ta có:

AE là cạnh chung

góc CAE = góc KAE ( AE là tia phân giác)

Vậy tam giác ACE = tg AKE ( trường hợp cạnh huyền góc nhọn trong tg vuông)

=> AC=AK 
 

 

25 tháng 4 2017

tớ làm câu c nhé

vì ACE=90 độ 

suy ra AE>AC(1)

vì KA=KB(câu b)

ma EKvuong góc AB

suy ra tam giac AEB cân tai E

suy ra EA=EB(2)

Từ (1) va (2)

suy ra EB>AC

4 tháng 2 2019

Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B ( d thuộc AC). Kẻ DEvuông gócBC ( E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AF

b) AD < BC

c) Ba điểm E, D, F thẳng hàng

2 tháng 5 2018

a) Xét \(\Delta ACE\) và \(\Delta AKE\) có:

  \(\widehat{ACE}=\widehat{AKE}=90^o\left(\widehat{C}=90^o;EK\perp AB\right)\)

  \(\widehat{CAE}=\widehat{KAE}\) ( AE là tia p.g của góc BAC )

   AE : cạnh chung

Do đó : \(\Delta ACE=\Delta AKE\left(ch.gn\right)\)

Suy ra : AC = AK ( 2 cạnh tương ứng )

\(\Rightarrow\)A thuộc đường trung trực của CK

Lại có : EC = EK ( \(\Delta ACE=\Delta AKE\))

\(\Rightarrow\)E thuộc đường trung trực của CK

Do đó : AE là đường trung trực của CK

Vậy \(AE\perp CK\)

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.a) CMR: tam giác ADE cânb)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.d) CMR: HK // BCe) cho HB cắt CK ở N. CMR: A,M,N thẳng hàngbài 2: cho tam giác abc vuông cân tại a , d là đường...
Đọc tiếp

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.

a) CMR: tam giác ADE cân

b)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.

c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.

d) CMR: HK // BC

e) cho HB cắt CK ở N. CMR: A,M,N thẳng hàng

bài 2: cho tam giác abc vuông cân tại a , d là đường thẳng bất kỳ qua a ( d không cắt đoạn bc). từ b và c kẻ bd và ce cùng vuông góc với d.

a)CMR: bd // ce

b)CMR: \(\Delta adb\)\(\Delta cea\)

c)CMR: bd + ce = de

d)gọi m là trung điểm của bc.CMR: \(\Delta dam\)\(\Delta ecm\)và tam giác dme vuông cân

bài 3: cho tam giác abc cân tại A (\(\widehat{a}\)< 45o), lấy m\(\in\)bc. từ m kẻ mh // ab (h\(\in\)ac), kẻ mi // ac (i\(\in\)ab).

a)CMR: \(\Delta aih\)=\(\Delta mhi\)

b)CMR: ai = hc

c)Lấy N sao cho hi là trung trực của mn. CMR: in = ib

0

a) Vì AE là phân giác BAC 

=> CAE = BAE 

Xét ∆ vuông ACE và ∆ vuông AKE ta có : 

AE chung 

CAE = BAE 

=> ∆ACE = ∆AKE (ch-gn)

=> AC = AK ( tương ứng )

=> ∆ACK cân tại A

Vì AE là phân giác BAC trong ∆ACK 

=> AE là trung trực ∆ACK

=> AE \(\perp\)CK