K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2018

bài 1 : (1) ta có : \(AB^2+CH^2=AH^2+BH^2+AC^2-AH^2\)

\(=BH^2+AC^2\left(đpcm\right)\)

(2) a) ta có : \(AB^2+AC^2=2AH^2+BH^2+CH^2\)

\(=2AM^2-2HM^2+\left(BM-HM\right)^2+\left(CM+HM\right)^2\)

\(=2AM^2-2HM^2+BM^2-2BM.HM+HM^2+CM^2+2CM.HM+HM^2\)

\(=2AM^2+BC^2-2BM.CM=2AM^2+BC^2-\dfrac{2BC^2}{4}\)

\(=2AM^2+\dfrac{BC^2}{2}\left(đpcm\right)\)

b) ta có : \(AC^2-AB^2=AH^2+HC^2-BH^2-AH^2\)

\(=HC^2-BH^2=\left(CM+HM\right)^2-\left(BM-HM\right)^2\)

\(=CM^2+2CM.HM+HM^2-BM^2+2BM.HM-HM^2\)

\(=2HM\left(CM+BM\right)=2HM.BC\left(đpcm\right)\)

7 tháng 9 2018

bài 2 : (1) ta có : \(\dfrac{EB}{FC}=\dfrac{BH^2}{AB}:\dfrac{HC^2}{AC}=\dfrac{BH^2.AC}{AB.HC^2}\)

\(=\dfrac{\dfrac{AB^4}{BC^2}.AC}{AB.\dfrac{AC^4}{BC^2}}=\left(\dfrac{AB}{AC}\right)^3\left(đpcm\right)\)

(2) ta có : \(BC.BE.CF=\dfrac{BH^2.HC^2}{AB.AC}.BC=\dfrac{BH^2.HC^2}{AH}\)

\(=\dfrac{\dfrac{AB^4.AC^4}{BC^4}}{AH}=\dfrac{BC^4.AH^4}{BC^4.AH}=AH^3\left(đpcm\right)\)

10 tháng 8 2020

Cho tam giác ABC vuông tại A( AB<AC ), có đường cao AH, trung tuyến AM Gọi E và F lần lượt la hình chiếu của H lên AB và AC; I và K lần lượt là trung điểm của HB và HC. CM :

10 tháng 8 2020

đề kiểu gì thế ?

Điểm E; Điểm F; Điểm H đây vậy bạn ơi

23 tháng 6 2017

a, bc^2 = ab^2 +ac^2 

      <=.> (ae+eb)^2   +(af+fc)^2

     <=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC 

<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)

<=>EB^2 +CF^2 + AH ^2  + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF 

<=>EB^2 +CF^2+3 AH^2  (đpcm)

b, cb =2a là thế nào vậy

25 tháng 6 2017

đề bài cho vậy 

28 tháng 12 2014

Ta có BE2 = BH2 - EH2

CF2 = CH2 - FH2

=> BE2 + CF2 = BH2 + CH2 - ( EH2 +FH2)=  BH2 + CH2 - EF2 BH2 + CH- AH= BH2 + CH- BH*HC>= 2 BH*HC - BH*HC

= BH*HC (BĐT Cô-si)

Dấu = xảy ra khi BH=HC hay tam giác ABC vuông cân.

7 tháng 9 2018

a) ta có : \(AB^2+AC^2=2AH^2+BH^2+CH^2\)

\(=2AM^2-2HM^2+\left(BM-HM\right)^2+\left(CM+HM\right)^2\)

\(=2AM^2-2HM^2+BM^2-2BM.HM+HM^2+CM^2+2CM.HM+HM^2\)

\(=2AM^2+BC^2-2BM.CM=2AM^2+BC^2-\dfrac{2BC^2}{4}\)

\(=2AM^2+\dfrac{BC^2}{2}\left(đpcm\right)\)

b) ta có : \(AC^2-AB^2=AH^2+HC^2-BH^2-AH^2\)

\(=HC^2-BH^2=\left(CM+HM\right)^2-\left(BM-HM\right)^2\)

\(=CM^2+2CM.HM+HM^2-BM^2+2BM.HM-HM^2\)

\(=2HM\left(CM+BM\right)=2HM.BC\left(đpcm\right)\)

16 tháng 7 2017

trong tam giac vuong ABH Cco \(AH^2+BH^2=AB^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\)

                                   AHC co \(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\left(2\right)\)

tu (1) va(2 ) suy ra \(AB^2-BH^2=AC^2-HC^2\Rightarrow AB^2+HC^2=AC^2+BH^2\)