Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1.2+2.3+3.4+...+n(n+1)
=>3A=(3−0).1.2+(4−1).2.3+...+(n+2−n+1).n(n+1)
=>3A=1.2.3−0.1.2+2.3.4−1.2.3+...+n(n+1)(n+2)−(n−1)n(n+1)
=>3A=n(n+1)(n+2)
=>A=n(n+1)(n+2):3(đpcm)
Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
Đặt : \(n^2+3n=k\)\(\Rightarrow A=k\left(k+2\right)=k^2+2k\)
Ta có : \(\left(k+1\right)^2=\left(k+1\right)\left(k+1\right)\)
\(=k\left(k+1\right)+1\left(k+1\right)\)
\(=k^2+k+k+1=k^2+2k+1\)
Do : \(n\inℕ^∗\Rightarrow n^2+3n>0\)hay : \(k>0\)
\(\Rightarrow k^2+2k>k^2\)
Ta có : \(k^2< k^2+2k< k^2+2k+1\)
hay : \(k^2< k^2+2k< \left(k+1\right)^2\)
Do : \(k^2\)và \(\left(k+1\right)^2\)là hai số chính phương liên tiếp
\(\Rightarrow k^2+2k\)không phải là số chính phương
\(\left(8x-3\right)^{2n}=5^{2n}\)
Do 2n chẵn
\(\Rightarrow\hept{\begin{cases}8x-3=5\\8x-3=-5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=-\frac{1}{4}\end{cases}}\)
Đề sai nhé, phải là :
\(3^{2n+1}+2^{n+2}⋮7\)
Ta có : \(9\equiv2\left(mod7\right)\Rightarrow9^n\equiv2^n\left(mod7\right)\)
\(\Rightarrow9^n.3+2^n.4\equiv2^n.3+2^n.4=2^n.\left(3+4\right)=2^n.7\equiv0\left(mod7\right)\)
Do đó : \(9^n.3+2^n.4⋮7\)
hay \(3^{2n+1}+2^{n+2}⋮7\) ( đpcm )
Ta có: \(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
\(=3.9^n-2^n.3+2^n.7\)
\(=3\left(9^n-2^n\right)+2^n.7\)
Ta lại có: \(\hept{\begin{cases}9^n-2^n⋮9-2=7\\2^n.7⋮7\end{cases}}\)
\(\Rightarrow3\left(9^n-2^n\right)+2^n.7⋮7\)
\(\Rightarrow\left(3^{2n+1}+2^{n+2}\right)⋮7\left(đpcm\right)\)
Ta co n^2 chia 5 du 1 hoac du 4
=>n^4 chia 5 du 1 hoac du 4
\(\orbr{\begin{cases}n^4\equiv1\left(mod5\right)\\n^4\equiv4\left(mod5\right)\end{cases}}=>\orbr{\begin{cases}n^5\equiv n\left(mod5\right)\\n^4-4+5⋮5\end{cases}}\)\(=>\orbr{\begin{cases}n^5-n⋮5\\n^4\equiv1\left(mod5\right)\left(#\right)\end{cases}}\)
Theo (#) ta co:\(n^5\equiv n\left(mod5\right)\Rightarrow n^5-n⋮5\)
Vay n^5-n chia het cho 5