K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

     1.2 + 2.3 + 3.4+...+n.( n+1)=A

 =>3.A=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ n.(n+1) . ((n+2) - (n-1))

 =>3.A=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1)+ n. (n+1). (n+2) - 0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)n(n+1)

  =>3A=n.(n+1).(n+2)

  => A=n.(n+1).(n+2)\3 

1 tháng 8 2016

Đặt A=1.2 + 2.3 + 3.4+...+n.( n+1)

=>3A=1.2.3+2.3.3+3.4.3+...+n.(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n.(n+1)(n+2)-(n-1).n.(n+2)

=n.(n+1)(n+2)-0

=n.(n+1)(n+2)

=>A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

25 tháng 8 2018

có 2 cách bạn ạ 

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

học tốt 

25 tháng 8 2018

cách 2

Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

tham khảo trên mạng có cả !!

AH
Akai Haruma
Giáo viên
24 tháng 6 2024

Đề yêu cầu gì bạn nhỉ?

17 tháng 8 2016

1.2+2.3+3.4.....+n.(n+1)=A 
ta có 
3.A=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ n.(n+1) . ((n+2) - (n-1)) 
3.A=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1)+ n. (n+1). (n+2) - 
0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)n(n+1) 
3A=n.(n+1).(n+2) 
A=n.(n+1).(n+2)/3 

1 tháng 8 2015

cách mình đúng;

3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n +1)3
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ...+ n(n + 1)((n + 2) - (n -1))
= 1.2.3 + 2.3.4 - 2.3 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - n(n + 1)(n - 1)
= n(n + 1)(n + 2)
=> S = n(n + 1)(n + 2)/3

14 tháng 7 2019

A =1.2+2.3+3.4+.............+n(n+1)
   =1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
   =(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
Ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
Thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3

\(A=1.2+2.3+3.4+...+n\left(n+1\right)\)

\(3A=1.2.3+2.3.4+3.4.3+..+3n\left(n+1\right)\)

\(=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(=n\left(n+1\right)\left(n+2\right)\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

ko chắc vì mk làm qua lâu òi hc tốt ~~:B~~

22 tháng 11 2018

Đây bạn:V

Là công thức nhé 

B=\(1^2+2^2+3^2+...+n^2=\)\(\frac{n+\left(n+1\right)+\left(n+2\right)}{6}\)

C bí ko hẳn nhưng ko có công thuc voi n

\(D=1.2+2.3+3.4+...+\left(n-1\right).n=\frac{\left(n-1\right).n+\left(n+1\right)}{3}\)

\(E=1.2.3+2.3.4+3.4.5+...+\left(n-2\right).\left(n-1\right).n=\frac{\left(n-2\right).\left(n-1\right).n.\left(n+1\right)}{4}\)

k mk nha :v

31 tháng 1 2017

S=1.2+2.3+3.4+.............+n(n+1) 
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1) 
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n) 
ta có các công thức: 
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6 
1 + 2 + 3 + ...+ n = n(n+1)/2 
thay vào ta có: 
S = n(n+1)(2n+1)/6 + n(n+1)/2 
=n(n+1)/2[(2n+1)/3 + 1] 
=n(n+1)(n+2)/3

ai tk mk mk tk lại cho 3 tk

31 tháng 1 2017

3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + n(n + 1).3

= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + n(n + 1)[(n + 2) - (n - 1)]

= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + n(n + 1)(n + 2) - (n - 1)n(n + 1)

= (1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + ..... + [ (n - 1)n(n + 1) - (n - 1)n(n + 1) ] + n(n + 1)(n + 2)

= n(n + 1)(n + 2)

\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

1 tháng 4 2018

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)