Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\frac{323232}{333333}=\frac{32}{33}\)
\(\frac{33333333}{34343434}=\frac{33}{34}\)
ta so sánh : \(\frac{32}{33}< \frac{33}{34}\)
=> \(\frac{323232}{333333}< \frac{33333333}{34343434}\)
cach 1: quy đồng tử số
cách 2: quy đồng mẫu số
cách 3: sử dụng tính chất bắc cầu
-54/55 >-55/55
-55/55>-55/56
=> -54/55>-55/56
cách 4:
-54/55+1=1/55
-55/56+1=1/56
ta có 1/55>1/56
=> -54/55>-55/56
+) \(1+frac{-54}{55}=\frac{1}{55}\)
\(1+frac{-55}{56}=\frac{1}{56}\)
Vì: 55<56
Nên: \frac{1}{55}\)>\frac{1}{56}\)
Vậy: \frac{-54}{55}\)>\frac{-55}{56}\)
+) \(1-frac{323232}{333333}=\frac{1}{33}\)
\(1-frac{33333333}{34343434}=\frac{1}{34}\)
Vì: 33<34
Nên: \frac{1}{33}\)>\frac{1}{34}\)
Vậy: \frac{323232}{333333}\)>\frac{333333333}{34343434}\)
- Ta co: \(\frac{323232}{333333}=\frac{32.10101}{33.10101}=\frac{32}{33}\)Va \(\frac{33333333}{34343434}=\frac{33.1010101}{34.1010101}=\frac{33}{34}\)
Khi do ta co: \(\frac{32}{33}va\frac{33}{34}\)
Ta co: \(\frac{32}{33}+\frac{1}{33}=1va\frac{33}{34}+\frac{1}{34}=1\)
Do \(\frac{1}{33}>\frac{1}{34}\)nen \(\frac{32}{33}>\frac{33}{34}\)hay \(\frac{323232}{333333}>\frac{33333333}{34343434}\)
Bạn ơi bạn làm sai rùi vs lại bạn xem lại đề đi tại vì pt trên nếu giải ra sẽ có hai nghiệp là x=1, x=0 nha bạn
x + y = x . y
⇒ x + y − x . y = 0
⇒ x ( 1 − y ) + y = 0
⇒ x ( 1 − y ) + ( y − 1 ) = −1
⇒ ( 1 − y ) ( x − 1 ) = −1
Ta có bảng sau :
1-y | 1 | -1 |
x-1 | -1 | 1 |
y | 0 | 2 |
x | 0 | 2 |
Vậy (x;y) thuộc (0;0);(2;2)
\(x+y=xy\)\(\Leftrightarrow xy-x-y=0\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=1\)( cộng 2 vế với 1 )
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)
Lập bảng giá trị ta có:
\(x-1\) | \(-1\) | \(1\) |
\(x\) | \(0\) | \(2\) |
\(y-1\) | \(-1\) | \(1\) |
\(y\) | \(0\) | \(2\) |
Vậy \(x=y=0\)hoặc \(x=y=2\)
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: DB=DE
b: Xét ΔABC có AD là đường phân giác
nên DB/AB=DC/AC
mà AB<AC
nên DB<DC
=>AC-AB>DC-DB
\(-\frac{2}{3}=\frac{10}{-15}=-\frac{10}{15}\)
\(\frac{4}{-5}=\frac{12}{-15}=-\frac{12}{15}\)
\(V\text{ì}-\frac{10}{15}>-\frac{12}{15}\)
Nên \(-\frac{2}{3}>-\frac{4}{5}\)
Ta có:
\(-\frac{2}{3}=\frac{4}{-6}\)
Vì \(\frac{4}{-6}>\frac{3}{-5}\Rightarrow\frac{-2}{3}>\frac{3}{-5}\)
Vậy \(\frac{-2}{3}>\frac{4}{-5}\)
:)
323232/333333 rút gọn là 32/33
33333333/34343434 rút gọn là 33/34
Ta quy đồng:
\(\frac{32}{33}\) và \(\frac{33}{34}\)
=> \(\frac{1088}{1122}\) và \(\frac{1089}{1122}\)
=> \(\frac{1088}{1122}\) < \(\frac{1089}{1122}\)
Vậy: 323232/333333 < 33333333/34343434