Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a(a2-1)=a(a2-12)
=a(a-1)(a+1)
Ta thấy: a(a-1)(a+1) là tích của 3 số nguyên liên tiếp
=>1 trong 3 số là số chẵn
=>a(a-1)(a+1) chia hết 2 (1)
Vì a, a-1, a+1 là 3 số nguyên liên tiếp nên khi chia 3 có các số dư lần lượt là 0,1,2
Suy ra a(a-1)(a+1) chia hết 3 (2)
Từ (1) và (2) ta có Đpcm
Với một điểm bất kì trong 6 điểm phân biệt cho trước, ta vẽ được 5 đường thẳng tới các điểm còn lại. Như vậy với 6 điểm, ta vẽ được 5.6 đường thẳng tới các điểm còn lại. Nhưng như vậy một đường thẳng đã được tính 2 lần do đó thực sự chỉ có 5.6 : 2 = 15 ( đường thẳng)
1. Tính chất giao hoán
a + b = b + a
2. Tính chất kết hợp
a + ( b + c ) = ( a + b ) + c
3. Tính chất cộng với 0
a + 0 = a
4. Tính chất phân phối giữa phép nhân và phép cộng
a + a + a = a . 3
Mình giải được bài này Aoi đừng giận mình nữa nha!
Kí hiệu số lớn ( SL ); so be ( SB )
Theo đầu bài cho:SL-SB=9,12 (1)
Dịch dấu phẩy của số bé sang phải 1 hàng thì số bé gấp lên 10 lần.
=> SL+SBx10=61,04 (2)
Gặp mỗi số ở (1) lên 10 lần ta được:SLx10-SBx10=91,2 (3)
Cong ve voi ve cua (2) va (3) ta duoc:
(SL+SBx10)+(SLx10-SBx10)=61,04+91,2
(SL+SBx10)+(SLx10-SBx10)=152,24
SL x 11=152,24
SL=152,24:11=13,84
SB=13,84-9,12=4,72
Ta có: \(\frac{a}{b}< \frac{a+1}{b+1}\)
\(B=\frac{10^{2013}+1}{10^{2014}+1}< \frac{10^{2013}+1+9}{10^{2014}+1+9}=\frac{10^{2013}+10}{10^{2014}+10}=\frac{10\left(10^{2012}+1\right)}{10\left(10^{2013}+1\right)}=\frac{10^{2012}+1}{2^{2013}+1}=A\)
Vậy: \(A>B\)
Ta có:
\(10A=\frac{10\left(10^{2012}+1\right)}{10^{2013}+1}=\frac{10^{2013}+10}{10^{2013}+1}=\frac{10^{2013}+1+9}{10^{2013}+1}=\frac{10^{2013}+1}{10^{2013}+1}+\frac{9}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)
\(10B=\frac{10\left(10^{2013}+1\right)}{10^{2014}+1}=\frac{10^{2014}+10}{10^{2014}+1}=\frac{10^{2014}+1+9}{10^{2014}+1}=\frac{10^{2014}+1}{10^{2014}+1}+\frac{9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)
Vì 102013+1<102014+1
\(\Rightarrow\frac{9}{10^{2013}+1}>\frac{9}{10^{2014}+1}\)
\(\Rightarrow1+\frac{9}{10^{2013}+1}>1+\frac{9}{10^{2014}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
Hàng 2 xếp thấy chưa vừa ⇒ Số vịt chia 2 dư 1 (1)
Hàng 3 xếp vẫn còn thừa 1 con ⇒ Số vịt chia 3 dư 1 (2)
4 hàng xếp vẫn chưa tròn ⇒ Số vịt không chia hết cho 4 (3)
Hàng 5 xếp thiếu 1 con mới đầy ⇒ số vịt chia 5 dư 4 (4)
Xếp thành hàng 7 đẹp thay ⇒ số vịt chia hết cho 7 (5)
————-
Từ điều kiện (4) và (1) ⇒ số vịt là 9, 19, 29, 39, 49, 59, 69, 79, 89, 99, … (số có tận cùng là 9)
Số đó chia hết cho 7 ⇒ số có tận cùng là 9 mà chia hết cho 7 phải là: 7 x 7 = 49, 7 x 17 = 119; 7 x 27 = 189 (thế thôi vì số vịt <200)
Kiểm tra điều kiện không chia hết cho 4 và chia 3 dư 1 thì số vịt là 49; 119 (loại vì chia 3 dư 2), 189 (loại vì chia hết cho 3).
Đáp số: 49 con vịt
\(\frac{1}{2}x+\frac{3}{5}.\left(x-2\right)=3\)
\(\frac{1}{2}x+\frac{3}{5}x-\frac{6}{5}=3\)
\(\frac{11}{10}x-\frac{6}{5}=3\)
\(\frac{11}{10}x=\frac{21}{5}\)
\(x=\frac{42}{11}\)
Vậy \(x=\frac{42}{11}\)
n! = 1.2.3...n
1! = 1
2! = 1.2 = 2
1!=1
2!=1.2=2