K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

thu02ngan10 đề phải là tìm GTNN nhé

Đặt \(A=x^2+5\)

Vì \(x^2\ge0\forall x\)nên \(A\ge0+5=5\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x^2=0\Leftrightarrow x=0\)

Vậy \(A_{min}=5\Leftrightarrow x=0\)

29 tháng 12 2018

Thế bạn Trần Thanh Phương có biết phương pháp tìm GTLN

27 tháng 9 2015

Ta có :

|x - 1/2| > 0

Vậy GTNN của |x - 1/2| = 0 <=> x - 1/2 = 0 <=> x = 1/2

\(6-2\left|1+3x\right|\le6\)'

Max \(A=6\Leftrightarrow1+3x=0\)

\(\Rightarrow3x=-1\)

\(\Rightarrow x=\frac{-1}{3}\)

\(\left|x-2\right|+\left|x-5\right|\ge0\)

Max \(B=0\Leftrightarrow\hept{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)

15 tháng 8 2016

A= 6-2|1+3x|

Amax khi và chỉ khi 2-/1+3x/min.Vì /1+3x/luôn lớn hơn hoạc bằng 0 mà 2/1-3x/min khi /1-3x/min.

=>để 2/1-3x/min thì /1-3x/=0 khi đó thì 2/1-3x/=0.A= 6-2|1+3x|=6-0=6

Vậy Amax= 6

5 tháng 11 2015

để biểu thức trên đạt GTLN thì | x-2| phải bé nhất 

ta có : |x| \(\ge\)0

vậy |x-2| =  0 xãy ra khi x = 2

=>x=2

=>GTLN của biểu thức trên là 7

nếu sai thì thông cảm nhé

5 tháng 11 2015

Sorry bạn nha.Mình không biết làm

Cậu vào câu hỏi tương tự đó