K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

- Ta gọi thành hồ bơi đối diện là đường thẳng AD

- Bạn Minh bơi đường ngắn nhất khi bơi từ điểm M 1 đường vuông góc với AD do đoạn thẳng nối từ 1 điểm ở ngoài một đường thẳng đến các điểm trên đường thẳng đó, đường vuông góc luôn ngắn hơn tất cả các đường xiên .

- Ta thấy AM vuông góc AD nên AM là đường ngắn nhất

19 tháng 4 2017

Theo hình vẽ các điểm A, B, C, D nằm trên một đường thẳng d và điểm M nằm ngoài đường thẳng đó. MA là đường vuông góc kẻ từ M đến đường thẳng d. Các đoạn thẳng MB, MC, MD là các đường xiên kẻ từ M lần lượt đến B, C và D

Ta có AB, AC, AD lần lượt là hình chiếu của MB, MC, MD xuống d. Ta có ngay AD >AC > AB suy ra

MD > MC >MB > MA

Điều đó có nghĩa là ngày hôm sau bạn Nam bơi đươci xa hơn ngày hôm trước, tức là bạn Nam tập đúng mục đích đề ra

12 tháng 3 2018

Ta có : AB,AC và AD lần lượt là hình chiếu của MB,MC,MD

=> MB<MC<MD

Mà MA là đường vuông góc

=> MA< MB<MC<MD (theo định lí 1)

Vậy bạn Nam tập bơi đúng mục đích đề ra (ngày hôm sau bơi xa hơn ngày hôm trước . )

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Dãy đã cho là dãy số liệu.

=> Em ủng hộ bạn Tròn.

30 tháng 11 2023

a) Thể tích hồ bơi:

12,5 . 5 . 2,5 = 156,25 (m³)

b) Diện tích đáy hồ bơi:

12,5 . 5 = 62,5 (m²)

Diện tích xung quanh hồ bơi:

(12,5 + 5) . 2 . 2,5 = 87,5 (m²)

Diện tích cần lát gạch:

87,5 + 62,5 = 150 (m²)

c) Thể tích nước trong hồ bơi:

12,5 . 5 . 1,5 = 93,75 (m³)

18 tháng 9 2023

Em thấy bạn Vuông nói đúng

Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.

Ví dụ:

\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Do hai tam giác trên có hai cặp góc bằng nhau nên cặp góc còn lại bằng nhau.

Xét \(\Delta ABC\) và \(\Delta A'B'C'\) có:

\(\widehat A = \widehat {A'}\) (gt)

AC = A'C' (gt)

\(\widehat C = \widehat {C'}\) (cmt)

\(\Rightarrow \Delta ABC = \Delta A'B'C'\) (g.c.g)

Vậy hai tam giác đã cho bằng nhau theo trường hợp góc – cạnh – góc.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Bể bơi có chiều dài là 3x (m), chiều rộng là x (m) nên đa thức biểu thị diện tích bể bơi là:

\(B = 3x. x = 3x^2 (m^2)\)

b) Mảnh đất có chiều dài là 65 (m), chiều rộng là 5 + x + 4 = x + 9 (m) nên đa thức biểu thị diện tích mảnh đất là:

\(D = 65. (x+9) = 65x + 585 (m^2)\)

c) Diện tích phần đất xung quanh bể bơi  = diện tích mảnh đất – diện tích bể bơi nên đa thức biểu thị diện tích phần đất xung quanh bể bơi là:

\(Q = D – B = 65x + 585 - 3x^2 = -3x^2+65x + 585(m^2)\)

Câu 10. (1 điểm) Cho đa thức: P(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - 2x4 + 1 - 4x3.a) Thu gọn và sắp xếp các hạng tử của đa thức trên theo luỹ thừa giảm dần của biến.b) Tính P(l) và P(-l).Câu 11. (1 điểm) Cho hai đa thức: M = 2x2 - 2xy - 3y2 + 1 và N = x2 - 2xy + 3y2 - 1. Tính M + N và M - N. Câu 12. (4 điểm) Cho tam giác ABC có AB = AC = 5cm, BC = 6cm, AM là đường trung tuyến xuất phát từ đỉnh A của tam giác ABC.a) Chứng...
Đọc tiếp

Câu 10. (1 điểm) Cho đa thức: P(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - 2x4 + 1 - 4x3.

a) Thu gọn và sắp xếp các hạng tử của đa thức trên theo luỹ thừa giảm dần của biến.

b) Tính P(l) và P(-l).

Câu 11. (1 điểm) Cho hai đa thức: M = 2x2 - 2xy - 3y2 + 1 và 

N = x2 - 2xy + 3y2 - 1. Tính M + N và M - N.

 

Câu 12. (4 điểm) Cho tam giác ABC có AB = AC = 5cm, BC = 6cm, AM là đường trung tuyến xuất phát từ đỉnh A của tam giác ABC.

a) Chứng minh và AM là tia phân giác của góc BAC.

b) Chứng minh.

c) Tính độ dài các đoạn thẳng BM và AM.

d) Từ M vẽ (E thuộc AB) và (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?

Câu 13. (1 điểm) Một người đứng trên bờ biển ở vị trí B, muốn đến một con tàu ở vị trí E trên mặt biển. Người đó có thể di chuyển theo 3 cách:

Cách 1. Bơi thẳng từ B tới E.

Cách 2. Chạy dọc theo bờ biển từ B tới D sau đó bơi từ D tới E.

Cách 3. Chạy dọc theo bờ biển từ B tới C rồi bơi từ C tới E. 

Biết rằng BE = 500m; BD = 300m; DE = 400m; CD = 70m,

. Hơn nữa, tốc độ bơi trung bình của người đó là 1m/s và tốc độ chạy trung bình là 3m/s. Hỏi:

a) Trong ba con đường đi từ B tới E nêu trên, con đường nào ngắn nhất, con đường nào dài nhất? Tại sao?

b) Với giả thiết đã cho, người đó nên chọn con đường nào để di chuyển từ B đến E nhanh nhất?

1
9 tháng 5 2020

Câu 10 . 

a)\(P\left(x\right)=2x^2+1\)Mình làm tắt lun vì bài này dễ

b) \(P\left(\pm1\right)=2.\left(\pm1\right)^2+1=3\)Do x^2 nên 1 vs -1 k có khác nhau nên mh thay 1 lần luôn

Câu 11: 

\(M+N=2x^2-2xy-3y^2+1+x^2-2xy+3y^2-1\)

\(=3x^2-4xy=x\left(2x-4y\right)\)

\(M-N=2x^2-2xy-3y^2+1-x^2+2xy-3y^2+1\)

\(=x^2-6y^2+2\)

Câu 10. (1 điểm) Cho đa thức: P(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - 2x4 + 1 - 4x3.a) Thu gọn và sắp xếp các hạng tử của đa thức trên theo luỹ thừa giảm dần của biến.b) Tính P(l) và P(-l).Câu 11. (1 điểm) Cho hai đa thức: M = 2x2 - 2xy - 3y2 + 1 và N = x2 - 2xy + 3y2 - 1. Tính M + N và M - N. Câu 12. (4 điểm) Cho tam giác ABC có AB = AC = 5cm, BC = 6cm, AM là đường trung tuyến xuất phát từ đỉnh A của tam giác ABC.a) Chứng...
Đọc tiếp

Câu 10. (1 điểm) Cho đa thức: P(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - 2x4 + 1 - 4x3.

a) Thu gọn và sắp xếp các hạng tử của đa thức trên theo luỹ thừa giảm dần của biến.

b) Tính P(l) và P(-l).

Câu 11. (1 điểm) Cho hai đa thức: M = 2x2 - 2xy - 3y2 + 1 và 

N = x2 - 2xy + 3y2 - 1. Tính M + N và M - N.

 

Câu 12. (4 điểm) Cho tam giác ABC có AB = AC = 5cm, BC = 6cm, AM là đường trung tuyến xuất phát từ đỉnh A của tam giác ABC.

a) Chứng minh và AM là tia phân giác của góc BAC.

b) Chứng minh.

c) Tính độ dài các đoạn thẳng BM và AM.

d) Từ M vẽ (E thuộc AB) và (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?

Câu 13. (1 điểm) Một người đứng trên bờ biển ở vị trí B, muốn đến một con tàu ở vị trí E trên mặt biển. Người đó có thể di chuyển theo 3 cách:

Cách 1. Bơi thẳng từ B tới E.

Cách 2. Chạy dọc theo bờ biển từ B tới D sau đó bơi từ D tới E.

Cách 3. Chạy dọc theo bờ biển từ B tới C rồi bơi từ C tới E. 

Biết rằng BE = 500m; BD = 300m; DE = 400m; CD = 70m,

. Hơn nữa, tốc độ bơi trung bình của người đó là 1m/s và tốc độ chạy trung bình là 3m/s. Hỏi:

a) Trong ba con đường đi từ B tới E nêu trên, con đường nào ngắn nhất, con đường nào dài nhất? Tại sao?

b) Với giả thiết đã cho, người đó nên chọn con đường nào để di chuyển từ B đến E nhanh nhất?

0