Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M P N I H K
Câu a, b em tự làm nhé nó khá đơn giản
câu c)
Áp dụng định lí pitago cho 2 tam giác vuông IKM và IKP ta có:
\(IK^2=MI^2-MK^2\)
\(IK^2=IP^2-KP^2\)
Cộng vế theo vế ta có;
\(2IK^2=MI^2-MK^2+IP^2-KP^2=\left(MI^2+IP^2\right)-MK^2-KP^2=MP^2-MK^2-KP^2\)( Áp dụng định lí pita go cho tam giác MIP)
Mà MP=MN
=> Điều p cm
Hình vẽ bạn tự vẽ nha
Trước hết chứng minh :(tự chứng minh lun)
Cho tam giác ABC vuông cân tại A . Chứng minh \(\sqrt{2}\cdot AB=BC\)(*)
Xét tam giác KDM và tam giác IEM ta có:
KM=MI (gt)
KMD= IME (gt);
MD=ME (gt);
=> tam giác KDM = tam giác IEM (c.g.c);
=> KD= EI (tương ứng);
Lại có NMP=90 (gt) => NMK+ KMP=90
=> IME+ KMP =90 => IMK =90 mà KM=MI
=> tam giác KMI vuông cân tại M
Xét tam giác NMP vuông cân tại M có MNH=45 mà MHN=90 (do MH là đường cao)
=>Tam giác MHN vuông cân tại H
Áp dụng (*) vào tam giác KMI vuông cân tại M và tam giác MHN vuông cân tại H ta được:
\(\hept{\begin{cases}\sqrt{2}\cdot MH=MN\\\sqrt{2}\cdot KM=KI\end{cases}}\)mà \(KM\ge MH\)
\(\Rightarrow KI\ge MN\)
Xét 3 điểm K,E,I ta có:
\(KE+EI\ge KI\)
hay \(KE+KD\ge MN\)
Hoàng Nguyễn Văn Dòng thứ 5 dưới lên sai rồi mem,tự coi lại nha,không thể như thế được đâu.Tại sao \(KM\ge MH\) lại suy ra \(KI\ge MN\) được ??
M N P C A I
a) Xét \(\Delta PAM;\Delta PCN\) có :
\(\widehat{PAM}=\widehat{PCN}\left(=90^{^O}\right)\)
\(PM=PN\) (Tam giác MNP cân tại P)
\(\widehat{P}:Chung\)
=> \(\Delta PAM=\Delta PCN\)(cạnh huyền - góc nhọn)
=> \(PA=PC\) (2 cạnh tương ứng)
* Mình sửa lại chút nhé , chứng minh CA // MN (có gì sai sót thì bạn góp ý nhé)
Xét \(\Delta PCA\) cân tại P (PA =PC - cmt) có :
\(\widehat{PCA}=\widehat{PAC}=\dfrac{180^o-\widehat{P}}{2}\left(1\right)\)
Xét \(\Delta PMN\) cân tại P có :
\(\widehat{PMN}=\widehat{PNM}=\dfrac{180^o-\widehat{P}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{PCA}=\widehat{PMN}\left(=\dfrac{180^o-\widehat{P}}{2}\right)\)
Mà thấy : 2 góc này ở vị trí đồng vị
Suy ra : CA // MN (đpcm)
b) Xét \(\Delta CMN;\Delta AMN\) có:
\(\widehat{CMN}=\widehat{ANM}\) (tam giác MPN cân tại P)
\(MN:chung\)
\(\widehat{MCN}=\widehat{NAM}\left(=90^o\right)\)
=> \(\Delta CMN=\Delta AMN\) (cạnh huyền - góc nhọn)
=> \(\widehat{CNM}=\widehat{AMN}\) (2 góc tương ứng)
Xét \(\Delta IMN\) có :
\(\widehat{IMN}=\widehat{INM}\) (do \(\widehat{CNM}=\widehat{AMN}\)- cmt)
=> \(\Delta IMN\) cân tại I (đpcm)
c) Xét \(\Delta PMK;\Delta PNK\) có :
\(PM=PN\left(gt\right)\)
\(\widehat{PMK}=\widehat{PNK}\) (Tam giác MNP cân tại P)
\(PK:chung\)
=> \(\Delta PMK=\Delta PNK\left(c.g.c\right)\)
=> \(MK=NK\) (2 cạnh tương ứng)
Do đó : K là trung điểm của MN
tam giác DEF = tam giác MNP (gt)
=> DF = MP và DE = MN
EF = NP
=> DF + EF = MP + NP
DF + EF = 10 (gt)
=> MP + NP = 10
NP - MP = 2 (gt)
=> NP = (10 + 2) : 2 = 6
=> MP = 6 - 2 = 4
DE = MN (cmt)
DE = 3 (gt)
=> MN = 3
tính 1 tam giác là ra
Hình bạn tự bẽ hai tam giác bằng nhau nha :33
Theo giả thiết ta có : \(\Delta DEF=\Delta MNP\)
\(\Rightarrow\hept{\begin{cases}DE=MN\\EF=NP\\DF=MP\end{cases}}\)
Khi đó : \(NP-MP=EF-DF=2\left(cm\right)\) (1)
Lại có : \(EF+FD=10\left(cm\right)\) (2)
Nên từ (1) và (2) \(\Rightarrow\hept{\begin{cases}EF=6\\FD=4\end{cases}\left(cm\right)}\)
Vậy : \(\Delta DEF=\Delta MNP\) có : \(\hept{\begin{cases}DE=MN=3\\EF=NP=6\\DF=MP=4\end{cases}\left(cm\right)}\)
N M P 9 15
Vì \(\Delta MNP\) vuông tại M nên nên theo định lý Pytago, ta có :
MP2 + MN2 = NP2
=> MP2 = NP2 - MN2 = 152 - 92 = 144 = 122
=> MP = 12 cm
Vì tam giác MNP vuông tại M
Áp dụng định lý pytago ta có MN2+ MP2 = NP2
suy ra 81 + MP2 = 225
suy ra MP = 12 (cm) Vì MP >0
góc IMN = góc IPN