Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3 và câu 4 thì tớ làm rồi nhé!
Câu 7:
+) Với p = 2 => p + 2 = 2 + 2 = 4 (là hợp số)
=> p = 2 (loại)
+) Với p = 3 => p + 2 = 3 + 2 = 5 (là số nguyên tố)
=> p + 10 = 3 + 10 = 13 (là số nguyên tố)
+) Với p > 3; p là số nguyên tố thì p có dạng là 3k + 1 hoặc 3k + 2
-) p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 = 3 . (k + 1) \(⋮\) 3 (là hợp số)
=> p = 3k + 1 (loại)
-) p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 = 3 . (k + 4) \(⋮\) 3 (là hợp số)
=> p = 3k + 2 (loại)
=> p chỉ có thể bằng 3
Vậy p = 3 thì p + 2 và p + 10 là số nguyên tố.
Câu 3:
A = 2016 + 20162 + ... + 20162016
A = (2016 + 20162) + ... + (20162015 + 20162016)
A = 2016 . (1 + 2016) + ... + 20162015 . (1 + 2016)
A = 2016 . 2017 + ... + 20162015 . 2017
A = 2017 . (2016 + ... + 20162015)
Vì 2017 \(⋮\)2017 nên suy ra 2017 . (2016 + ... + 20162015) \(⋮\)2017
=> A \(⋮\)2017
Vậy A \(⋮\)2017
Câu 4:
a) A = 4 + 42 + 43 + ... + 42016
A = (4 + 42 + 43) + ... + (42014 + 42015 + 42016)
A = 4 . (1 + 4 + 42) + ... + 42014 . (1 + 4 + 42)
A = 4 . 21 + ... + 42014 . 21
A = 21 . (4 + ... + 42014)
Vì 21 \(⋮\)21 nên suy ra 21 . (4 + ... + 42014) \(⋮\)21
=> A \(⋮\)21
Vậy A \(⋮\)21
b) A = 4 + 42 + 43 + ... + 42016
A = (4 + 42 + 43 + 44 + 45 + 46) + ... + (42011 + 42012 + 42013 + 42014 + 42015 + 42016)
A = 1 . (4 + 42 + 43 + 44 + 45 + 46) + ... + 42010 . ( 4 + 42 + 43 + 44 + 45 + 46)
A = 1 . 5460 + ... + 42010 . 5460
A = 5460 . (1 + ... + 42010)
Vì 5460 \(⋮\)420 nên suy ra 5460 . (1 + ... + 42010) \(⋮\)420
=> A \(⋮\)420
Vậy A \(⋮\)420.
a, Có 1=0.1+1
2=1.2+2
.....
1999=1998.1999+1999
=> A = 0.1+1.2+....+1998.1999 + (1+2+....+1999)
Xét B = 1+2+....+1999 = (1+1999).[ (1999-1):2 + 1 ] :2 = 1999 . 2000 : 2
C =0.1+1.2+....+1998.1999
= 1.2+2.3+....+1998.1999
3C = 1.2.3+2.3.3+.....+1998.1999.3 = 1.2.(3-0)+2.3.(4-1)+....+1998.1999.(2000-1997)
= 1.2.3 - 1.2.0 + 2.3.4 - 1.2.3 + .... + 1998.1999.2000-1997.1998.1999 = 1998.1999.2000
=> C = 1998.1999.2000:3
=> A = B+C = 1999.2000/2 + 1998.1999.2000/3 = (1999.2000.3+1998.1999.2000.2)/6 = 1999.2000.(3+1998.2)/6
= 1999.2000.3999/6 = 1999.1000.1333
a) Ta có:\(M=2+2^2+2^3+...+2^{100}\)
\(2M=2^2+2^3+2^4+...+2^{101}\)
\(2M-M=2^{101}-2\)
Hay \(M=2^{101}-2\)
b) Ta có: \(M=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{99}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{99}.3\)
\(=3.\left(2+2^3+...+2^{99}\right)\)
\(\Rightarrow M⋮3\)
Hok tốt nha!!!
a) M=2+22+23+...+2100
2M=2.(2+22+23+...+2100)
2M=2.2+2.22+2.23+...+2100
2M=22+23+24+...+2101
2M-M=(22+23+24+...+2101) - (2+22+23+...+2100)
M=2101- 2