K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

a)\(x^3-x^2-14x+24=x^3-3x^2+2x^2-6x-8x+24\)

\(=x^2\left(x-3\right)+2x\left(x-3\right)-8\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+2x-8\right)\)

=\(\left(x-3\right)\left(x^2+4x-2x-8\right)=\left(x-3\right)\left(x-2\right)\left(x+4\right)\)

b)Tương tự câu a

c)\(x^3-7x+6=x^3-x^2+x^2-x-6x+6\)

=\(x^2\left(x-1\right)+x\left(x-1\right)-6\left(x+1\right)=\left(x+1\right)\left(x^2+x-6\right)\)

=\(\left(x+1\right)\left(x^2+3x-2x-6\right)\)

=\(\left(x+1\right)\left(x-2\right)\left(x+3\right)\)

d;e thương tự câu c

2 tháng 7 2019

a) a4 + a2 - 2

a4 + 2a2 - a2 - 2

a2.( a2 + 2 ) - ( a2 + 2 )

( a2 - 1 ).( a2 + 2 )

( a + 1 ).( a - 1 ).( a2 +2 )

b) x4 + 4x2 - 5

x4 + 5x2 - x2 - 5

x2.( x2 + 5 ) - ( x2 + 5 )

( x2 - 1 ).( x2 + 5 )

( x + 1 ).( x - 1 ).( x2 + 5 )

c) x3 - 19x - 30

x3 + 2x2 - 2x2 + 4x - 15x - 30

x2( x + 2 ) - 2x.( x + 2 ) - 15.( x + 2 )

( x + 2 ).( x2 - 2x - 15 )

d) x3 - 7x - 6

x3 - 3x2 + 3x2 - 9x + 2x - 6

x2.( x - 3 ) + 3x.( x - 3 ) + 2.( x - 3 )

( x - 3 ).( x2 + 3x +2 )

( x - 3 ).( x2 + 2x + x + 2 )

( x - 3 ).( x.( x + 2 ) + ( x + 2 )

( x + 1 ).( x + 2 ).( x - 3 )

e) x3 - 5x2 - 14x

x3 - 7x2 + 2x2 - 14x

x2.( x - 7 ) + 2x.( x - 7 )

( x - 7 ).( x2 + 2x )

x.( x + 2 ).( x - 7 )

2 tháng 12 2016

a ) \(x^3-7x-6=x^3-x-6x-6=x^3-x-6\left(x+1\right)\)

\(=x\left(x^2-1\right)-6\left(x+1\right)=\left(x+1\right)\left[x\left(x-1\right)-6\right]\)

\(=\left(x+1\right)\left[\left(x^2-x-6\right)\right]=\left(x+1\right)\left[\left(x^2+2x-3x-6\right)\right]\)

\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b )

\(x^3-19x-30=\left(x^3-9x\right)-\left(10x+30\right)=x\left(x^2-9\right)-10\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x-10\right)=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)

c )

\(a^3-6a^2+11a-6=\left(a-3\right)\left(a-2\right)\left(a-1\right).\)

 

22 tháng 9 2018

\(x^3-5x^2-14x\)

\(=x^3+2x^2-7x^2-14x\)

\(=x^2\left(x+2\right)-7x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-7x\right)\)

\(=x\left(x+2\right)\left(x-7\right)\)

\(x^3-7x-6\)

\(=x^3+x^2-x^2-x-6x-6\)

\(=x^2\left(x+1\right)-x\left(x+1\right)-6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-6\right)\)

\(=\left(x+1\right)\left(x^2+2x-3x-6\right)\)

\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]\)

\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)

\(x^3-19x-30\)

\(=x^3-5x^2+5x^2-25x+6x-30\)

\(=x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2+5x+6\right)\)

\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)

1 tháng 11 2015

a) x3 - 7x - 6 = x3 + x2 - x2 - x - 6x - 6

= x2(x + 1) - x(x + 1) - 6(x + 1)

= (x + 1)(x2 - x - 6)

= (x + 1)(x2 + 2x - 3x - 6)

= (x + 1)[x(x + 2) - 3(x + 2)]

= (x + 1)(x + 2)(x - 3)

19 tháng 6 2019

\(b,x^3-3x^2-4x+12\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-4\right)\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

\(c,3x^3-7x^2+17x-5\)

\(\Leftrightarrow3x^3-x^2-6x^2+2x+15x-5\)

\(\Leftrightarrow x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2-2x+5\right)\)

19 tháng 6 2019

\(\text{d) 2x}^4- 7x^3 - 2x^2 + 13x + 6\)
\(\text{= (2x^4 + 2x^3) - (9x^3 + 9x^2) + (7x^2 + 7x) + (6x + 6)}\)
\(\text{= 2x^3(x + 1) - 9x^2(x + 1) + 7x(x + 1) + 6(x + 1)}\)
\(\text{= (x + 1)(2x^3 - 9x^2 + 7x + 6)}\)
\(\text{= (x + 1)(2x + 1)(x - 3)(x - 2)}\)

15 tháng 7 2016

a)x^2-(a+b)x+ab

= x^2 - ax - bx + ab

= (x^2 - ax) - (bx - ab)

= x(x-a) - b(x-a)

= (x-b)(x-a) 

b)7x^3-3xyz-21x^2+9z

c)4x+4y-x^2(x+y)

= 4(x + y) - x^2(x+y)

= (4-x^2) (x+y)

= (2-x)(2+x)(x+y)

d) y^2+y-x^2+x

= (y^2 - x^2) + (x+y)

= (y-x)(y+x)+ (x+y)

= (y-x+1) (x+y)

e)4x^2-2x-y^2-y

= [(2x)^2 - y^2] - (2x +y)

= (2x-y)(2x+y) - (2x+y)

= (2x -y -1)(2x+y)

f)9x^2-25y^2-6x+10y

31 tháng 8 2021

ko biết làm

 

9 tháng 7 2017

a)  = x2 - 3x + 2x - 6

    = x(x -3) + 2(x - 3)

    = (x - 3)(x + 2)

b)  = x2 - x + 5x - 5

    = x(x - 1) + 5(x - 1)

    = (x - 1)(x + 5)

c)  = x3 - 5x2 + 5x2 - 25x + 6x - 30

    = x2(x - 5) + 5x(x - 5) +6(x - 5)

    = (x - 5)(x2 + 5x + 6)

    = (x - 5)(x2 + 2x + 3x + 6)

    = (x - 5)[x(x + 2) + 3(x + 2)]

    = (x - 5)(x + 2)(x + 3)

9 tháng 7 2017

a)  = x2 - 3x + 2x - 6

    = x(x -3) + 2(x - 3)

    = (x - 3)(x + 2)

b)  = x2 - x + 5x - 5

    = x(x - 1) + 5(x - 1)

    = (x - 1)(x + 5)

c)  = x3 - 5x2 + 5x2 - 25x + 6x - 30

    = x2(x - 5) + 5x(x - 5) +6(x - 5)

    = (x - 5)(x2 + 5x + 6)

    = (x - 5)(x2 + 2x + 3x + 6)

    = (x - 5)[x(x + 2) + 3(x + 2)]

    = (x - 5)(x + 2)(x + 3)

Bài 4:

a) Ta có: \(a^4+a^2+1\)

\(=a^4+2a^2+1-a^2\)

\(=\left(a^2+1\right)^2-a^2\)

\(=\left(a^2-a+1\right)\left(a^2+a+1\right)\)

b) Ta có: \(a^4+a^2-2\)

\(=a^4+2a^2-a^2-2\)

\(=a^2\left(a^2+2\right)-\left(a^2+2\right)\)

\(=\left(a^2+2\right)\left(a^2-1\right)\)

\(=\left(a^2+2\right)\left(a-1\right)\left(a+1\right)\)

c) Ta có: \(x^4+4x^2-5\)

\(=x^4+5x^2-x^2-5\)

\(=x^2\left(x^2+5\right)-\left(x^2+5\right)\)

\(=\left(x^2+5\right)\left(x^2-1\right)\)

\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)

d) Ta có: \(x^3-19x-30\)

\(=x^3-25x+6x-30\)

\(=x\left(x^2-25\right)+6\left(x-5\right)\)

\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2+5x\right)+6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2+5x+6\right)\)

\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)

e) Ta có: \(x^3-7x-6\)

\(=x^3-4x-3x-6\)

\(=x\left(x^2-4\right)-3\left(x+2\right)\)

\(=x\left(x-2\right)\left(x+2\right)-3\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x\right)-3\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x-3\right)\)

\(=\left(x+2\right)\left(x^2-3x+x-3\right)\)

\(=\left(x+2\right)\left[x\left(x-3\right)+\left(x-3\right)\right]\)

\(=\left(x+2\right)\left(x-3\right)\left(x+1\right)\)

f) Ta có: \(x^3-5x^2-14x\)

\(=x\left(x^2-5x-14\right)\)

\(=x\left(x^2-7x+2x-14\right)\)

\(=x\left[x\left(x-7\right)+2\left(x-7\right)\right]\)

\(=x\left(x-7\right)\left(x+2\right)\)