Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)
a/ \(1\left(m+1\right)< 0\Rightarrow m< -1\)
b/ \(-3\left(4-m^2\right)< 0\Leftrightarrow m^2-4< 0\Rightarrow-2< m< 2\)
c/ \(\left(m-1\right)\left(m^2+4m-5\right)< 0\)
\(\Leftrightarrow\left(m-1\right)^2\left(m+5\right)< 0\Rightarrow m< -5\)
d/ \(\left(m+1\right)\left(m+1\right)< 0\Leftrightarrow\left(m+1\right)^2< 0\)
\(\Rightarrow\) Ko tồn tại m thỏa mãn
e/ \(2m\left(-m^2-2m+3\right)< 0\)
\(\Leftrightarrow2m\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}-3< m< 0\\m>1\end{matrix}\right.\)
f/ \(4\left(2m^2-5m+2\right)< 0\Rightarrow\frac{1}{2}< m< 2\)
g/ \(\left(6-m\right)\left(-m^2-2m+3\right)< 0\)
\(\Leftrightarrow\left(6-m\right)\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}m< -3\\1< m< 6\end{matrix}\right.\)
h/ \(m\left(2m-1\right)< 0\Rightarrow0< m< \frac{1}{2}\)
d/
\(\left\{{}\begin{matrix}m\ne0\\\Delta'=\left(m-1\right)^2-m\left(m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m+1< 0\end{matrix}\right.\)
\(\Rightarrow m< -1\)
e/
\(\Delta=\left(m+1\right)^2-4\left(m-1\right)< 0\)
\(\Leftrightarrow m^2-2m+5< 0\)
\(\Leftrightarrow\left(m-1\right)^2+4< 0\)
Không tồn tại m thỏa mãn
f/
\(m=1\) pt vô nghiệm (thỏa mãn)
Với \(m\ne1\)
\(\Delta'=\left(m-1\right)^2+\left(m-1\right)< 0\)
\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)
Vậy \(0< m\le1\)
g/
\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(m-2\right)^2-\left(m-2\right)\ge0\\\frac{1}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\\left(m-2\right)\left(m-3\right)\ge0\\m>2\end{matrix}\right.\)
\(\Rightarrow m\ge3\)
h/
\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\\\frac{5m-6}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-m^2+4m-3\ge0\\\left[{}\begin{matrix}m>2\\m< \frac{6}{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}1\le m< \frac{6}{5}\\2< m\le3\end{matrix}\right.\)
d/
\(\left\{{}\begin{matrix}\Delta'=4\left(2m-1\right)^2-4m\ge0\\\frac{m}{4}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-5m+1\ge0\\m>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0< m< \frac{1}{4}\\m>1\end{matrix}\right.\)
e/
\(\left\{{}\begin{matrix}\Delta=\left(m+1\right)^2-4\left(m-1\right)\ge0\\m-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+5\ge0\\m>1\end{matrix}\right.\) \(\Rightarrow m>1\)
f/
\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-4\left(m-1\right)\ge0\\\frac{m-1}{4}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5\ge0\\m>1\end{matrix}\right.\) \(\Rightarrow m\ge5\)
d/ \(\left\{{}\begin{matrix}\Delta=\left(m-3\right)^2+4\left(m+1\right)>0\\x_1+x_2=3-m< 0\\x_1x_2=-m-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+13>0\left(luôn-đúng\right)\\m< 3\\m< -1\end{matrix}\right.\)
\(\Rightarrow m< -1\)
e/ \(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-4\left(m-1\right)>0\\x_1+x_2=\frac{m-1}{2}< 0\\x_1x_2=\frac{m-1}{4}>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m^2-6m+5>0\\m< 1\\m>1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
f/ \(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)>0\\x_1+x_2=\frac{2\left(2m-3\right)}{2-m}< 0\\x_1x_2=\frac{5m-6}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\1< m< 3\\\left[{}\begin{matrix}m>2\\m< \frac{3}{2}\end{matrix}\right.\\\left[{}\begin{matrix}m>2\\m< \frac{6}{5}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1< m< \frac{6}{5}\\2< m< 3\end{matrix}\right.\)
Để pt có 2 nghiệm âm pb \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta>0\\x_1+x_2< 0\\x_1x_2>0\end{matrix}\right.\)
a/ \(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-3m+1>0\\x_1+x_2=2\left(m-1\right)< 0\\x_1x_2=3m-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-5m+2>0\\m< 1\\m>\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\frac{1}{3}< m< \frac{5-\sqrt{17}}{2}\)
b/ \(\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2-4\left(m+1\right)>0\\x_1+x_2=2-m< 0\\x_1x_2=m+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m>0\\m< 2\\m>-1\end{matrix}\right.\) \(\Rightarrow-1< m< 0\)
c/ Giống phần b, chắc bạn ghi nhầm
Đặt \(a=x^2\left(a>=0\right)\)
pt trở thành \(a^2+\left(1-2m\right)a+m^2-1=0\)
\(\text{Δ}=\left(1-2m\right)^2-4\left(m^2-1\right)\)
\(=4m^2-4m+1-4m^2+4=-4m+5\)
a: Để pt vô nghiệm thì -4m+5<0
hay m>5/4
b: Để phương trình có hai nghiệm phân biệt thì -4m+5>0
hay m<5/4
c: Để pt có 4 nghiệm phân biệt thì
\(\left\{{}\begin{matrix}m< \dfrac{5}{4}\\-2m+1>0\\m^2-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -1\\\dfrac{1}{2}< m< 1\end{matrix}\right.\)
bạn thêm đấu bằng vào kết quả hộ mình nhé. sửa lại \(2\le m\le4\)
bài 1: bạn chỉ cần giải đen ta làm sao cho nó >=0 .Mình l;àm mẫu câu a nhé:
a) để phương trình có 2 no phân biệt thì \(\Delta\)>=0
\(\Leftrightarrow\left(2m-5\right)^2-\left(m-3\right)\left(5m-11\right)\) >=0
\(\Leftrightarrow-m^{^{ }2}+6m-8\ge0\)
\(\Leftrightarrow2< m< 4\)
vậy 2<m<4 thỏa mãn đề bài