Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F O I J M P Q L K T
a) Vì tứ giác BFEC nội tiếp nên \(\widehat{PFB}=\widehat{ACB}=\widehat{PBF}\) suy ra \(PF=PB\)
Suy ra \(MP\perp AB\) vì MP là trung trực của BF. Do đó \(MP||CF\). Tương tự \(MQ||BE\)
b) Dễ thấy M,I,J đều nằm trên trung trực của EF cho nên chúng thẳng hàng. Vậy IJ luôn đi qua M cố định.
c) Gọi FK cắt AD tại T ta có \(FK\perp AD\) tại T. Theo hệ thức lượng \(IE^2=IF^2=IT.IL\)
Suy ra \(\Delta TIE~\Delta EIL\). Lại dễ có \(EI\perp EM\), suy ra ITKE nội tiếp
Do vậy \(\widehat{ILE}=\widehat{IET}=\widehat{IKT}=90^0-\widehat{LIK}\). Vậy \(IK\perp EL.\)
a b o e f n m h q
A, DỄ DÀNG NHẬN THẤY AF VÀ BE LÀ CÁC TIA PHÂN GIÁC ( DO TAM GIÁC ABC ĐỀU)
=> CO LÀ TIA PHÂN GIÁC CỦA GÓC ACB
=> ACO = 30
DỄ DÀNG TÍNH ĐƯỢC OBC = 30
=> OBC = ACO
DO TAM GIÁC ABC ĐỀU => O LÀ GIAO ĐIỂM CỦA 3 ĐƯỜNG TRUNG TRỰC
=> OB = OC
TỪ ĐÓ DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC OBM = TAM GIÁC OCN ( C.G.C)
=> OM = ON
B, KẺ FH VUÔNG GÓC VỚI EF, NQ VUÔNG GÓC VỚI EF
DO CF = AE , CN = BM
=> MF = NE
LẠI CÓ GÓC NEQ = CEF = CFE = 60
=> NEQ = CFE
TỪ ĐÓ DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC NQE = TAM GIÁC MHF ( G.C.G)
=> NQ = MH
TA CÓ NE SONG SONG VỚI MH , NQ = MH
=> MQNH LÀ HÌNH BÌNH HÀNH
=> QH CẮT MN TẠI TRUNG ĐIỂM CỦA MN
MÀ I LÀ TRUNG ĐIỂM CỦA MN
=> I THUỘC HQ
=> I THUỘC EF
=> ĐPCM
C, BÀI NÀY TỰ VẼ HÌNH NHÉ
TỪ M,N KỂ ĐƯỜNG VUÔNG GÓC VỚI AB CẮT AB TẠI H VÀ K. TỪ M KỂ ĐƯỜNG VUÔNG GÓC VỚI NK CẮT NK TẠI Q
=> MN LỚN HƠN HOẶC BẰNG MQ
MÀ MQ =HK
=> MN LỚN HƠN HOẶC BẰNG HK
MẶT KHÁC KA + HB = 1/2 AN + 1/2 BM = 1/2 AB = 1/2 BC = 1/2 AC
=> HK = 1/2 AB
=> MN LỚN HƠN HOẶC BẰNG 1/2AB
DẤU BẰNG XẢY RA KHI VÀ CHỈ KHI M VÀ N LÀ TRUNG ĐIỂM CỦA AC VÀ BC
( MÌNH MỚI HỌC LỚP 7)
Nhac cau 3
Tu M,N ke duong vuong goc voi AB cat AB tai H va K.Tu M ke duong vuong goc voi NK cat NK tai Q
=>MN\(_{\ge}\)MQ. Ma MQ=HK
=>MN\(\ge\)HK
Mat \(\ne\)KA+HB=1/2AN+1/2BM=1/2AB=1/2BC=1/2CA
=>HK=1/2AB
=>MN\(\ge\)1/2AB.dau bang xay ra khi M,N la trung diem cua cac canh
câu a
Gọi H là chân đường vuông góc hạ từ M xuống tia phân giác ^BAC. Tam giác ADE có AH vừa là phân giác vùa là đường cao nên cân tại A.
Qua B vẽ BF//CE (F thuộc DE) => tam giác BDF cân tại B => BD = BF (1)
Mặt khác xét 2 tam giác BMF và CME có : BM = CM; ^BMF = ^CME ( đối đỉnh); ^MBF = ^MCE ( so le trong) => tam giác BMF = tg CME => BF = CE (2)
Từ (1) và (2) => đpcm
mấy câu còn lại bó tay
Tự vẽ hình nha,
Câu a, Ta có : tứ giác AHMK là hình chữ nhật nên MK=AH và HM=AK
Mà HM, MK lần lượt là bán kính của (H) và (M)
Xét tam giác HAK có : theo bđt tam giác : HA-HB<HK<HA+HK
Hay MK-MH<HK<MH+MK => hai đường tròn luôn cắt nhau ( giả sử MK>MH)
Ta có \(\widehat{NMH}=\widehat{NCB};\widehat{NMK}=\widehat{NBC}\)
Do AKMH là hình chữ nhật nên
\(\widehat{NMH}+\widehat{NMK}=90\Rightarrow\widehat{NCB}+\widehat{NBC}=90\)
\(\Rightarrow\widehat{BNC}=90\). Vẽ hình vuông ABEC
Ta có A, N, B, E, C cùng thuộc đường tròn đường kính BC cố định
Ta lại có \(\widehat{NEB}=\widehat{NCB}\)mà \(\widehat{NCB}=\widehat{NMH}\)
\(\widehat{NEB}=\widehat{NMH}\), do \(MH//EB\)nên ba điểm N, M, E thẳng hàng. Vậy MN luôn đi qua điểm E cố định