\(\text{A = 1.3 + 3.5 + 5.7 + …+ 97.99 + 99.101.}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

A=1.3+3.5+5.7+...+99.101

6A=1.3(5+1)+3.5(7-1)+5.7(9-3)+7.9(11-5)+...+99.101(103-97)

= 1.3.5+1.3+3.5.7-3.5+5.7.9-3.5.7+7.9.11-5.7.9+...+99.101.103-97.99.101

=1.3+99.101.103

=> A= \(\frac{1.3+99.101.103}{6}\)

15 tháng 8 2017

a. Ta có: \(A=1\cdot3+3\cdot5+5\cdot7+...+99\cdot101\)

\(\Rightarrow A=1\left(1+2\right)+3\cdot\left(3+2\right)+...+99\left(99+2\right)\)

\(\Rightarrow A=\left(1^2+3^2+5^2+...+97^2+99^2\right)+2\left(1+3+5+...+97+99\right)\)

Đặt \(M=1^2+3^2+5^2+99^2\)

\(\Rightarrow M=\left(1^2+2^2+3^2+...+100^2\right)-2^2\left(1^2+2^2+3^2+50^2\right)\)

Tính dãy tổng quát \(N=1^2+2^2+3^2+...+n^2\)

\(\Rightarrow N=1\left(0+1\right)+2\left(1+1\right)+3\left(2+1\right)+...+n[\left(n-1\right)+1]\)

\(\Rightarrow N=\left[1\cdot2+2\cdot3+...+\left(n-1\right)n\right]+\left(1+2+3+...+n\right)\)

\(\Rightarrow N=n\left(n+1\right)\cdot\left[\left(n-1\right):3+1:2\right]=n\left(n+1\right)\cdot\left(2n+1\right):6\)

Áp dụng vào M ta được:

\(M=100\cdot101\cdot201:6-4\cdot50\cdot51\cdot101:6=166650\)

\(\Rightarrow A=166650+2\left(1+99\right)\cdot50:2\)

\(\Rightarrow A=166650+5000=171650\)

Vậy \(A=171650\)

15 tháng 8 2017

tks bạn

S = 1.3 + 2.4 + 3.5 + 4.6 + ..... + 99.101 + 100.102

= 1.(2 + 1) + 2(3 + 1) + 3.(4 + 1) + ......... + 99(100 + 1) + 100.(101 + 1)

= 1.2 + 1 + 2.3 + 1 + 3.4 + 3 + ........ + 99.100 + 99 + 100.101 + 100

= (1.2 + 2.3 + 3.4 + ....... + 100.101 ) + (1 + 2 + 3 + ....... + 100)

Ta có công thức :

1.2+2.3+3.4+....+n(n+1)=n(n+1)(n+2)/3 

1+2+3+...+n=n(n+1)/2 

Áp dụng vào bài toán ta được :

S=100.101.102/3 +100.101/2 

= 343400 + 5050

= 348450

28 tháng 10 2019

BẰNG 165 NHỚ KẾT BẠN VỚi Mình NHA THANK fOR VERRY Meo

2 tháng 5 2018

\(A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)

\(A=1-\frac{1}{101}\)

\(A=\frac{101}{101}-\frac{1}{101}\)

\(A=\frac{100}{101}\)

Chúc bạn học tốt !!! 

2 tháng 5 2018

A = 1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/99 - 1/101 

A = 1/1 - 1/101 

A = 101/101 - 1/101 

A = 100/101 

2 tháng 6 2016

a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101 

=1-1/101 

=100/101 

b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5 

=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5 

=(1-1/101).2,5

=100/101.2,5 

=250/101 

dấu / là phần nhé. bạn có thể xem bài có dấu phần ở : Câu hỏi của Nguyễn Thị Hoài Anh 

2 tháng 6 2016

A)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

=1-\(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

=1-\(\frac{1}{101}\)

=\(\frac{100}{101}\)

B) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{1}{99.101}\)

=5.(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))

=5.\(\frac{2}{2}.\)(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))

=5.\(\frac{1}{2}\).(\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\))

=5.\(\frac{1}{2}\).(1-\(\frac{1}{3}\)+\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

=5.\(\frac{1}{2}\).(1-\(\frac{1}{101}\))

=\(\frac{5}{2}.\frac{100}{101}=\frac{250}{100}\)

Chúc bạn học tốtleuleu

31 tháng 3 2017

Trả lời

a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...\dfrac{2}{99.101}\)

=\(2.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\right)\)

=\(2.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

= \(2.\left(\dfrac{1}{1}-\dfrac{1}{101}\right)\)

=\(2.\dfrac{100}{101}\)

=\(\dfrac{200}{101}\)

31 tháng 3 2017

Hình như phần b bạn chép đề sai hay sao đấy

7 tháng 5 2016

\(a,=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

\(b,=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

7 tháng 5 2016

a,\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)=1.\frac{99}{100}=\frac{99}{100}\)