Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N P E F H K
a/
\(MP\perp AC;NA\perp AC\) => MP//NA
\(MN\perp AB;PA\perp AB\) => MN//PA
=> ANMP là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Ta có \(\widehat{A}=90^o\)
=> ANMP là hình chữ nhật (hbh có 1 góc vuông là HCN)
b/
MN//PA (cmt) => MN//AC
MB=MC (gt)
=> NA=NB (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)
C/m tương tự cũng có PA=PC
Ta có
MP//NA (cmt) => MP//NB
NA=NB; PA=PC => NP là đường trung bình của tg ABC
=> NP//BC => NP//MB
=> BMPN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
c/
Xét HCN ANMP có
FM=FA (trong HCN 2 đường chéo cắt nhau tại trung điểm mỗi đường)
EM=EB (gt)
=> EF là đường trung bình của tg MAB => EF//AB
=> ABEF là hình thang
Ta có
MB=MC => AM=MB=MC=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
Ta có
FM=FA=AM/2
EB=EM=BM/2
=> FA=EB
=> ABEF là hình thang cân
d/
a: Xét tứ giác ANMP có
\(\widehat{ANM}=\widehat{APM}=\widehat{NAP}=90^0\)
=>ANMP là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
MN//AC
Do đó: N là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MP//AB
Do đó: P là trung điểm của AC
Xét ΔABC có
N,P lần lượt là trung điểm của AB,AC
=>NP là đường trung bình của ΔABC
=>NP//BC và NP=BC/2
=>NP//MH
Ta có: ΔHAC vuông tại H
mà HP là đường trung tuyến
nên HP=AP
mà AP=MN(ANMP là hình chữ nhật)
nên HP=MN
Xét tứ giác MHNP có MH//NP
nên MHNP là hình thang
Hình thang MHNP có MN=HP
nên MHNP là hình thang cân
Ta có: MN ⊥ AB
=> góc MNA = 900
MP ⊥ AC
=> góc MPA = 900
Xét tứ giác ANMP có:
góc MNA = góc MPA = góc NAP = 900
=> tứ giác ANMP là hình vuông