Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=-(3x+7)+(5x-2)+(2x-10)
=-3x-7+5x-2+2x-10
=(-3x+5x+2x)-(7+2+10)
=4x-19
B = (6x+8)-(4x-5)-3x
= 6x+8-4x+5-3x
= (6x-4x-3x) + (8+5)
= -x + 13
= 13-x
C = 2(5x+3) - (2x-1) + 12
= 10x+6 - 2x + 1 + 12
= (10x-2x) + (6+1+12)
= 8x + 19
D = (x+7)-3(x+1)+2x-5
= x+7-3x-3+2x-5
= (x-3x+2x) + (7-3-5)
= -1
[url=http://Blog.Uhm.vN][img]http://blog.uhm.vn/emo/bobototo/44.gif[/img][/url]
a: ĐKXĐ: \(x\notin\left\{4\right\}\)
x2-3x=0
=>x(x-3)=0
=>\(\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Thay x=0 vào A, ta được:
\(A=\dfrac{0-5}{0-4}=\dfrac{-5}{-4}=\dfrac{5}{4}\)
Thay x=3 vào A, ta được:
\(A=\dfrac{3-5}{3-4}=\dfrac{-2}{-1}=\dfrac{2}{1}=2\)
b: \(B=\dfrac{x+5}{2x}-\dfrac{x-6}{5-x}-\dfrac{2x^2-2x-50}{2x^2-10x}\)
\(=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-10x+25}{2x\left(x-5\right)}=\dfrac{\left(x-5\right)^2}{2x\left(x-5\right)}=\dfrac{x-5}{2x}\)
c: Đặt P=A:B
ĐKXĐ: \(x\notin\left\{4;5;0\right\}\)
P=A:B
\(=\dfrac{x-5}{x-4}:\dfrac{x-5}{2x}\)
\(=\dfrac{x-5}{x-4}\cdot\dfrac{2x}{x-5}=\dfrac{2x}{x-4}\)
Để P là số nguyên thì \(2x⋮x-4\)
=>\(2x-8+8⋮x-4\)
=>\(8⋮x-4\)
=>\(x-4\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
=>\(x\in\left\{5;3;6;2;8;0;12;-4\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{3;6;2;8;12;-4\right\}\)
Bài 3: Cho biểu thức A = x - 5/x - 4 và B = x + 5/2x - x - 6/5 - x - 2x² - 2x - 50 / 2 x^2 - 10x t
Ta có x² - 3x = 0 suy ra x x (x - 3) = 0
x = 0; x = 3
Với x = 0 suy ra A = 5/4 v
Với x = 3 suy ra A = 2
Để p đạt giá trị nguyên khi 8/x - 4 cũng phải có giá trị nguyên 28 : (x - 4)
Vậy x - 4 thuộc ước chung của 8 = -8, -4, -1, 1, 4, 8
x - 4 = 8 suy ra x = 4
x - 4 = 4 suy ra 2x = 0 loại
x - 4 = -1 suy ra x = 3 thỏa mãn
x - 4 = 1 suy ra x = 5 loại
x - 4 = 4 - 2x = 8 thỏa mãn
x - 4 = 8 suy ra x = 12 thỏa mãn
+) A = \(\frac{3}{x-1}\)
=> x-1 \(\in\) Ư(3) = {-1,-3,1,3}
Ta có bảng :
x-1 | -1 | -3 | 1 | 3 |
x | 0 (loại) | -2 | 2 | 4 |
Vậy x = { -2,2,4 }
+) Bài B đề chưa rõ
+) C = \(\frac{11}{3x-1}\)
=> 3x-1 \(\in\) Ư(11) = { -1,-11,1,11 }
Ta có bảng :
3x-1 | -1 | -11 | 1 | 11 |
x | 0 (loại) | \(\frac{-10}{3}\) (loại) | \(\frac{2}{3}\) (loại) | 4 |
Vậy x = 4
+) M = \(\frac{x+2}{x-1}\)
Ta có: \(\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=\frac{x-1}{x-1}+\frac{3}{x-1}=1+\frac{3}{x-1}\)
=> x-1 \(\in\) Ư(3) = {-1,-3,1,3}
Tiếp theo như bài A mình đã làm
E = \(\frac{x+7}{x+2}=\frac{x+2+5}{x+2}=\frac{x+2}{x+2}+\frac{5}{x+2}=1+\frac{5}{x+2}\)
=> x+2 \(\in\) Ư(5) = {-1,-5,1,5 }
Ta có bảng :
x+2 | -1 | -5 | 1 | 5 |
x | -3 | -7 | -1 | 3 |
Vậy x = { -7,-3,-1,3 }
<=>x2+2x+1+3(x2+5x-5x-25)-(4x2-4x+1)
<=>x2+2x+1+3x2+15x-15x-75-4x2+4x-1
<=>6x=75
k mình nha bạn
\(a,A=\left(x+10\right)+\left(2x-15\right)-\left(x-20\right)\)
\(=x+10+2x-15-x+20\)
\(=2x+15\)
\(b,\)Thay \(x=15\)vào biểu thức A = 2x + 15
Ta được : \(A=2\times15+15\)
\(\Rightarrow A=45\)
a) A = (x + 10) + (2x - 15) - (x - 20)
A = x + 10 + 2x - 15 - x + 20
A = x + 10 + 2x + (-15) + (-x) + 20
A = x + (-x) + 2x + 10 + 20 + (-15)
A = 2x + 15
b) x = 15 thì A = 2x + 15 = 2.15 + 15 = 15.3 = 45
a/ \(2x+\frac{1}{7}=\frac{1}{3}\)
=> \(2x=\frac{1}{3}-\frac{1}{7}=\frac{7}{21}-\frac{3}{21}\)
=> \(2x=\frac{4}{21}\)
=> \(x=\frac{4}{21}:2=\frac{4}{21}.\frac{1}{2}=\frac{2}{21}\)
b/ \(3\left(x-\frac{1}{2}\right)=\frac{4}{9}\)
=> \(x-\frac{1}{2}=\frac{4}{9}:3=\frac{4}{9}.\frac{1}{3}\)
=> \(x-\frac{1}{2}=\frac{4}{27}\)
=> \(x=\frac{4}{27}+\frac{1}{2}=\frac{8}{54}+\frac{27}{54}=\frac{35}{54}\)
c/ \(\left(x-5\right)^2+4=68\)
=> \(\left(x-5\right)^2=68-4=64\)
=> \(\left[{}\begin{matrix}x-5=8\\x-5=-8\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=8+5=13\\x=-8+5=-3\end{matrix}\right.\)
d/ \(\left(\left|x\right|-\frac{1}{2}\right)\left(2x+\frac{3}{2}\right)=0\)
=> \(\left[{}\begin{matrix}\left|x\right|-\frac{1}{2}=0\\2x+\frac{3}{2}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left|x\right|=0+\frac{1}{2}=\frac{1}{2}\\2x=0-\frac{3}{2}=-\frac{3}{2}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\\x=-\frac{3}{2}:2=-\frac{3}{2}.\frac{1}{2}=-\frac{3}{4}\end{matrix}\right.\)
e) \(5x+2=3x+8\)
=> \(5x-3x=8-2=6\)
=> \(2x=6\)
=> \(x=6:2=3\)
f/ \(26-\left(5-2x\right)=27\)
=> \(5-2x=26-27=-1\)
=> \(2x=5-\left(-1\right)=5+1=6\)
=> \(x=6:2=3\)
g/ \(\left(4x-8\right)-\left(2x-6\right)=4\)
=> \(4x-8-2x+6=4\)
=> \(\left(4x-2x\right)+\left(-8+6\right)=4\)
=> \(2x+-2=4\)
=> \(2x=4+2=6\)
=> \(x=6:2=3\)
h/ \(\left(x+3\right)^3:3-1=-10\)
=> \(\left(x+3\right)^3:3=-10+1=-9\)
=> \(\left(x+3\right)^3=-9.3=-27\)
=> \(x+3=-3\)
=> \(x=-3-3=-6\)
a) x + 45 -[ 90 + (-20) + 5 - (-45)] +3x
= x +45 -( 90 - 20 + 5 + 45) + 3x
= x +45 -120 +3x
= -75 +4x
b) x +(-294 +13 -2x) +(94 -13) +9x
= x -281 -2x +81 +9x
= -200 +8x