K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b)Ta có:\(A=2018^2+2019^2+2019^2.2018^2\)

\(=\left(2018^2-2.2018.2019+2019^2\right)+2.2018.2019+\left(2018.2019\right)^2\)

\(=\left(2019.2018\right)^2+2.2018.2019+1^2=\left(2019.2018+1\right)^2\)là số chính phương (đpcm)

c)Ta có:Xét hiệu a^2+b^2+c^2+d^2-a(b+c+d),ta có:

\(a^2+b^2+c^2+d^2-a\left(b+c+d\right)=a^2+b^2+c^2+d^2-ab-ac-ad\)

\(=\left(\frac{1}{4}a^2-ab+b^2\right)+\left(\frac{1}{4}a^2-ac+c^2\right)+\left(\frac{1}{4}a^2-ad+d^2\right)+\frac{a^2}{4}\)

\(=\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}\right)^2\ge0\forall a,b,c,d\left(đpcm\right)\)

\(\Rightarrow a^2+b^2+c^2\ge a\left(b+c+d\right)-d^2\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}b=c=d=\frac{a}{2}\\\frac{a}{2}=0\end{cases}\Leftrightarrow}a=b=c=d=0\)

9 tháng 2 2016

\(1.\)  \(\left(a+2\right)\left(a+3\right)\left(a^2+a+6\right)+4a^2=\left(a^2+5a+6\right)\left(a^2+a+6\right)+4a^2\)

Đặt  \(t=a^2+3a+6\)  , ta được:

\(\left(t+2a\right)\left(t-2a\right)+4a^2=t^2-4a^2+4a^2=t^2=\left(a^2+3a+6\right)^2\)

8 tháng 2 2016

bài 1:

(a^2+3a+6)^2

28 tháng 10 2021

a) \(=3\left(5y+4x\right)\)

b) \(=\left(x-3\right)^2\)

c) \(=y\left(y^2+2y+3\right)\)

 

8 tháng 10 2016

ừm ừm....nhonhung

8 tháng 10 2016

làm được ko 

8 tháng 9 2019

\(x^2-y^2+4x+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

\(4x^2-y^2+8\left(y-2\right)\)

\(=4x^2-\left(y^2-8y+16\right)\)

\(=4x^2-\left(y-4\right)^2\)

\(=\left(2x+y-4\right)\left(2x-y+4\right)\)

10 tháng 9 2016

a)   a2+1=a2+12=(a+1)(a-1)