Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)
\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)
\(=\left(-6x-18\right)\left(8x^2-18\right)\)
b) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left[3\left(x+y-1\right)\right]^2-\left[2\left(2x+3y+1\right)\right]^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3+4x+6y+2\right)\left(3x+3y-3-4x-6y-2\right)\)
\(=\left(7x+9y-1\right)\left(-x-3y-5\right)\)
c) \(-4x^2+12xy-9y^2+25\)
\(=-\left(2x\right)^2+2.2x.3y-\left(3y\right)^2+5^2\)
\(=-\left[\left(2x\right)^2-2.2x.3y+\left(3y\right)^2-5^2\right]\)
\(=-\left[\left(2x-3y\right)^2-5^2\right]\)
\(=-\left(2x-3y-5\right)\left(2x-3y+5\right)\)
d) \(x^2-2xy+y^2-4m^2+4mn-n^2\)
\(=\left(x^2-2xy+y^2\right)-4m\left(m-n\right)-n^2\)
\(=\left(x-y\right)^2-4m\left(m-n\right)-n^2\)
\(=\left(x-y-n\right)\left(x-y+n\right)-4m\left(m-n\right)\)
a, Ta có : \(-x^2+2x-1-3\)
\(=-\left(x-1\right)^2-3\)
Ta thấy : \(\left(x-1\right)^2\ge0\forall x\)
=> \(-\left(x-1\right)^2-3\le-3\forall x\)
Vậy Max = -3 <=> x = 1 .
b, Ta có : \(-x^2-4x-4+4\)
\(=-\left(x+2\right)^2+4\)
Ta thấy : \(\left(x+2\right)^2\ge0\forall x\)
=> \(-\left(x+2\right)^2+4\le4\forall x\)
Vậy Max = 4 <=> x = -2 .
c, Ta có : \(-9x^2+24x-16-2\)
\(=-9\left(x^2-\frac{2.4x}{3}+\frac{16}{9}\right)-2\)
\(=-9\left(x-\frac{4}{3}\right)^2-2\)
Ta thấy : \(\left(x-\frac{4}{3}\right)^2\ge0\forall x\)
=> \(-9\left(x-\frac{4}{3}\right)^2-2\le-2\forall x\)
Vậy Max = -2 <=> x = \(\frac{4}{3}\) .
d, Ta có : \(-x^2+4x-4+3\)
\(=-\left(x-2\right)^2+3\)
Ta thấy : \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2+3\le3\forall x\)
Vậy Max = 3 <=> x = 2 .
e, Ta có : \(-x^2+2x-1-4y^2-4y-1+7\)
\(=-\left(x-1\right)^2-4\left(y^2+y+\frac{1}{4}\right)+7\)
\(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\)
Ta thấy : \(\left\{{}\begin{matrix}\left(x-1\right)^2\\\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\ge0\forall xy\)
=> \(\left\{{}\begin{matrix}-\left(x-1\right)^2\\-4\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\le0\forall xy\)
=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2\le0\forall xy\)
=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\le7\forall xy\)
Vậy Max = 7 <=> \(\left\{{}\begin{matrix}x=1\\y=-\frac{1}{2}\end{matrix}\right.\)
a) \(85^2-15^2=\left(85-15\right)\left(85+15\right)=70.100=7000\)
c) \(73^2-13^2-10^2+20.13\)
\(=73^2-\left(13^2+10^2-20.13\right)\)
\(=73^2-\left(13^2-2.13.10+10^2\right)\)
\(=73^2-\left(13-10\right)^2\)
\(=73^2-3^2\)
\(=\left(73-3\right)\left(73+3\right)\)
\(=70.76\)
\(=5320\)
d)Viết đề = công thức trực quan hộ mình
Bài 4 : Tính nhanh :
a, 15. 64 + 25. 100 + 36. 15 + 60. 100
= (15 . 64 + 36. 15) + (25. 100 + 60. 100)
= 15.(64 + 36) + 100.(25 + 60)
= 15. 100 + 100. 85
= 100.(15 + 85)
= 100. 100
= 10000
b, 472 + 482 - 25 + 94. 48
= 472 + 2.47. 48 + 482 - 25
= (47 + 48)2 - 52
= (47 + 48 - 5)(47 + 48 + 5)
= (48 + 22)(48 + 52)
= 90. 100
= 9000
c, 93 - 92. ( -1) - 9. 11 + ( -1). 11
= 93 + 92 + 11(- 9 - 1)
= 92.(9 + 1) + 11. (-10)
= 81. 10 - 110
= 810 - 110
= 700
d,2016. 2018 - 20172
= (2017 - 1)(2017 + 1) - 20172
= 20172 - 1 - 20172
= -1
#Học tốt!
Bài 9 : Tìm x, biết :
a, (x - 2)(x - 3) + (x - 2) - 1 = 0
\(\Leftrightarrow\left(x-2\right)\left(x-3+1\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(x-2+1\right)\left(x-2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy x ={1; 3}
b, (x + 2)2 - 2x(2x + 3) = (x + 1)2
\(\Leftrightarrow\left(x+2\right)^2-\left(x+1\right)^2-2x\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x+2+x+1\right)\left(x+2-x-1\right)-2x\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3-2x\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(1-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\1-2x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{-\frac{3}{2};\frac{1}{2}\right\}\)
c, 6x3 + x2 = 2x
\(\Leftrightarrow6x^3+x^2-2x=0\)
\(\Leftrightarrow x\left(6x^2+x-2\right)=0\)
\(\Leftrightarrow x\left(6x^2+4x-3x-2\right)=0\)
\(\Leftrightarrow x\left[2x\left(3x+2\right)-\left(3x+2\right)\right]=0\)
\(\Leftrightarrow x\left(3x+2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+2=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{2}{3}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{0;-\frac{2}{3};\frac{1}{2}\right\}\)