Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2\left(x-2\right)\left(x+2\right)}{x^2+x+5}.\frac{5\left(x^2+x+5\right)}{\left(x-4\right)\left(x+3\right)}.\frac{\left(x-1\right)\left(x-4\right)}{10\left(x-2\right)\left(x+2\right)}=\frac{x-1}{x+3}\)
ĐK: \(x\ne\left\{4;-3;1;2;-2\right\}\)
b, \(P\in Z\Rightarrow\frac{x-1}{x+3}\in Z\Rightarrow x-1⋮\left(x+3\right)\Rightarrow-4⋮\left(x+3\right)\Rightarrow\left(x+3\right)\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x\in\left\{-7;-5;-4;-2;-1;1\right\}\)
\(\Rightarrow P\in\left\{2;3;5;-3;-1;0\right\}\)
a: \(C=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{x+3}{x-2}+\dfrac{2x+1}{x-3}\)
\(=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}=\dfrac{x+1}{x-3}\)
b: Để C là số nguyên thì \(x-3+4⋮x-3\)
=>\(x-3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{4;5;1;7;-1\right\}\)
a,ĐK: \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)
\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)
c, Với x = 4 thỏa mãn ĐKXĐ thì
\(A=\frac{-3}{4-3}=-3\)
d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)
\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)
Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)
\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)
\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)
B xác định \(\Leftrightarrow\hept{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}\Leftrightarrow}x\ne\pm3\)
Vậy B xác định \(\Leftrightarrow x\ne\pm3\)
\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)
\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{5\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{5x-15+3x+9-5x-3}{\left(x+3\right)\left(x-3\right)}\)
\(B=\frac{3x-9}{\left(x+3\right)\left(x-3\right)}\)
\(B=\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(B=\frac{3}{x+3}\)
\(ĐKXĐ:x\ne-3;2\)
\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}-\frac{1}{x-2}=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x+2\right)}-\frac{1}{x-2}\)
\(=\frac{x^2+4x+4}{\left(x+3\right)\left(x+2\right)}-\frac{5}{\left(x+3\right)\left(x+2\right)}-\frac{x+3}{\left(x+2\right)\left(x+3\right)}\)
\(=\frac{x^2+4x+4-5-x-3}{\left(x+2\right)\left(x+3\right)}=\frac{x^2+3x-4}{\left(x+3\right)\left(x+2\right)}=\frac{\left(x+4\right)\left(x-1\right)}{\left(x+3\right)\left(x+2\right)}\)
\(x^2-9=0\Leftrightarrow x=3\left(vì:x\ne-3\right)\)
\(\Rightarrow P=\frac{7}{15}\)
\(P\inℤ\Leftrightarrow x^2+3x-4⋮x^2+5x+6\Leftrightarrow2x+10⋮x^2+5x+6\Leftrightarrow12⋮x^2+5xx+6\)
\(................\left(dễ\right)\)
P/s: shitbo sai rồi nha bạn!Nếu không tin thì thay x = 3 vào P ban đầu và giá trị P sau khi rút gọn sẽ thấy sự khác biệt =)
ĐK: \(x\ne-3;x\ne2\)
a) \(P=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}-\frac{1}{x-2}\)
\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
b) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
Thay vào điều kiện,tìm loại x = -3 .Tìm được x =3
Ta có: \(P=\frac{x-4}{x-2}=\frac{3-4}{3-2}=-1\)
c)Ta có: \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)
Để P có giá trị nguyên thì \(\frac{2}{x-2}\) nguyên hay \(x-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Suy ra \(x=\left\{0;1;3;4\right\}\)
\(a.\)
\(C=\dfrac{2x-9}{x^2-5x+6}-\dfrac{x^2+3x}{x^2-2x}-\dfrac{2x+1}{3-x}\)
\(C=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{x^2+3x}{x\left(x-2\right)}+\dfrac{2x+1}{x-3}\) \(\left(1\right)\)
\(\text{Đ}KX\text{Đ}:\) \(\left\{{}\begin{matrix}x\ne0\\x\ne2\\x\ne3\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\) \(C=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{x^2+3x}{x\left(x-2\right)}+\dfrac{2x+1}{x-3}\)
\(C=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{x+3}{x-2}+\dfrac{2x+1}{x-3}\)
\(C=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\)
\(C=\dfrac{2x-9-x^2+9+2x^2-3x-2}{\left(x-3\right)\left(x-2\right)}\)
\(C=\dfrac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}\)
\(C=\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x-3\right)\left(x-2\right)}\)
\(C=\dfrac{x-1}{x-3}\)
\(b\)
\(C=\dfrac{x-1}{x-3}=\dfrac{\left(x-3\right)+4}{x-3}=1+\dfrac{4}{x-3}\)
Để C nguyên thì \(x-3\in\text{Ư}\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x\in\left\{-1;1;2;4;5;7\right\}\)
\(a.C=\dfrac{2x-9}{x^2-5x+6}-\dfrac{x^2+3x}{x^2-2x}-\dfrac{2x+1}{3-x}\) ( x # 2 ; x # 0 ; x # 3 )
\(C=\dfrac{2x^2-9x}{x\left(x-2\right)\left(x-3\right)}-\dfrac{x\left(x^2-9\right)}{x\left(x-2\right)\left(x-3\right)}+\dfrac{\left(x^2-2x\right)\left(2x+1\right)}{x\left(x-2\right)\left(x-3\right)}\) \(C=\dfrac{2x^2-9x-x^3+9x+2x^3-3x^2-2x}{x\left(x-2\right)\left(x-3\right)}\)
\(C=\dfrac{x^3-x^2-2x}{x\left(x-2\right)\left(x-3\right)}\)
\(C=\dfrac{x\left(x-2\right)\left(x+1\right)}{x\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b. \(C=\dfrac{x+1}{x-3}=\dfrac{x-3+4}{x-3}=1+\dfrac{4}{x-3}\)
Để : C ∈ Z ⇒ ( x - 3 )∈ { 1 ; -1 ; 2 ; -2 ; 4 ; -4 } x - 3 x 1 4 - 1 2 (TM) 2 5(TM) -2 1(TM) 4 7(TM) -4 -1(TM) (KTM)
Vậy ,....