K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2018

a) ta có: \(A=\frac{3x-2}{x+3}=\frac{3x+9-11}{x+3}=\frac{3.\left(x+3\right)-11}{x+3}=3-\frac{11}{x+3}\)

Để A là số nguyên

=> 11/x+3 là số nguyên

\(\Rightarrow11⋮x+3\Rightarrow x+3\inƯ_{\left(11\right)}=\left\{\pm1;\pm11\right\}\)

nếu x + 3 = 1 =>  x = 2 (TM)

...

bn tự xét típ nha

25 tháng 8 2018

b) ta có: \(B=\frac{x^2-2x+6}{x+1}=\frac{x^2+x-3x-3+9}{x+1}=\frac{x.\left(x+1\right)-3.\left(x+1\right)+9}{x+1}\)

\(=\frac{\left(x+1\right).\left(x-3\right)+9}{x+1}=x-3+\frac{9}{x+1}\)

Để B nguyên

=> 9/x+1 nguyên

\(\Rightarrow9⋮x+1\Rightarrow x+1\inƯ_{\left(9\right)}=\left\{\pm1;\pm3;\pm9\right\}\)

...

16 tháng 7 2020

Bài làm:

c) \(-\frac{2}{5}+\frac{5}{3}\left(\frac{3}{2}-\frac{4}{15}x\right)=-\frac{7}{6}\)

\(\Leftrightarrow-\frac{2}{5}+\frac{5}{2}-\frac{4}{9}x=-\frac{7}{6}\)

\(\Leftrightarrow\frac{4}{9}x=-\frac{2}{5}+\frac{5}{2}+\frac{7}{6}\)

\(\Leftrightarrow\frac{4}{9}x=\frac{49}{15}\)

\(\Leftrightarrow x=\frac{49}{15}\div\frac{4}{9}\)

\(\Rightarrow x=\frac{147}{20}\)

Vậy \(x=\frac{147}{20}\)

Bài 2:

a) Ta có: \(F=\frac{3x-2}{x+3}=\frac{\left(3x+9\right)-11}{x+3}=3-\frac{11}{x+3}\)

Để F nguyên \(\Rightarrow\frac{11}{x+3}\inℤ\Leftrightarrow x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

\(\Rightarrow x\in\left\{-14;-4;-2;8\right\}\)

Vậy \(x\in\left\{-14;-4;-2;8\right\}\)thì F nguyên

19 tháng 7 2020

2b) Tách

\(G=\frac{x^2-2x+4}{x+1}=\frac{x^2+x-3x-3+7}{x+1}=\frac{x\left(x+1\right)-3\left(x+1\right)+7}{x+1}\)

\(=\frac{x\left(x+1\right)}{x+1}-\frac{3\left(x+1\right)}{x+1}+\frac{7}{x+1}=x-3+\frac{7}{x+1}\)

G là số nguyên <=> \(\frac{7}{x+1}\)là số nguyên <=> \(7⋮x+1\)<=> \(x+1\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)

<=> \(x\in\left\{0;-2;6;-8\right\}\)

21 tháng 6 2019

Bài 1:

a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)

Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)

b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)

Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Vậy \(a\in\left\{-9;-5;-3;1\right\}\)

Bài 2:

a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)

Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-2;4;6;12\right\}\)

b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)

Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-4;2;4;10\right\}\)

c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)

Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Vậy \(x\in\left\{-14;-4;-2;8\right\}\)

Bài 3:

Gọi \(d\inƯC\left(2m+9;14m+62\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)

Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản

22 tháng 8 2019

Làm câu a,b thôi nha !

a)Tính A khi x=1;x=2;x=5/2

x=1

Thay x vào biểu thức A, ta có:

\(\frac{3.x+2}{1-3}=-\frac{5}{2}\)

x=2

Thay x vào biểu thức A ta có:

\(\frac{3.2+2}{2-3}=-\frac{8}{1}=-8\)

x=5/2

Thay x vào biểu thức A ta có:

\(\frac{3.0,4+2}{0,4-3}=\frac{3,2}{-2,6}=\frac{16}{13}\)

b)Tìm x thuộc Z để A là số nguyên:

\(A=\frac{3x+2}{x-3}\)

Để A là số nguyên thì:

=>\(3x+2⋮x-3\)

\(\Rightarrow3x-9+11⋮x-3\)

\(\Rightarrow3\left(x-3\right)+11⋮x-3\)

\(\Rightarrow11⋮x-3\)

\(\Rightarrow x-3\inƯ\left(11\right)=\left\{1;11\right\}\)

Xét trường hợp

\(\orbr{\begin{cases}x-3=1\\x-3=11\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1+3=4\\x=11+3=14\end{cases}}\)

Vậy A là số nguyên thì

\(x\inƯ\left(4;14\right)\)

Các bài còn lại làm tương tự !

11 tháng 3 2019

1,b, 2xy - x = y + 5

<=> 4xy - 2x = 2y + 10

<=> 2x(2y - 1) - (2y - 1) = 11

<=> (2x - 1)(2y - 1) = 11

Lập bảng ra làm nốt

11 tháng 3 2019

\(1,c,\frac{1}{x}-3=-\frac{1}{y-2}\)

\(\Leftrightarrow y-2-3x\left(y-2\right)=-x\)

\(\Leftrightarrow y-2-3xy+6x+x=0\)

\(\Leftrightarrow-3xy+7x+y-2=0\)

\(\Leftrightarrow-x\left(3y-7\right)+y-2=0\)

\(\Leftrightarrow-3x\left(3y-7\right)+3y-6=0\)

\(\Leftrightarrow-3x\left(3y-7\right)+\left(3y-7\right)=-1\)

\(\Leftrightarrow\left(1-3x\right)\left(3y-7\right)=-1\)

Lập bảng làm nốt

\(a,\frac{x-7}{x-11}=\frac{\left(x-11\right)+4}{x-11}=1+\frac{4}{x-11}\)

Để phân số trên là số hữu tỉ âm\(\Rightarrow\frac{4}{x-11}< 0\)

\(\Rightarrow x-11< 0\)

\(\Rightarrow x< 11\)

\(2,\frac{x+2}{x-6}=\frac{x-6+8}{x-6}=1+\frac{8}{x-6}\)

Để phân số trên là số hữu tỉ âm \(\frac{\Rightarrow8}{x-6}< 1\Rightarrow x-6>8\Rightarrow x>14\)

\(3,\frac{x-3}{x+7}=\frac{x+7-10}{x+7}=1-\frac{10}{x+7}\)

Để phân số trên là số hữu tỉ âm\(\Rightarrow\frac{10}{x+7}< 1\Rightarrow x+7>10\Rightarrow x>3\)

8 tháng 8 2015

cái này mình chưa học tới nên không biết

8 tháng 8 2015

a) Ta có: \(\frac{x-7}{x-11}=\frac{\left(x-11\right)+4}{x-11}=1+\frac{4}{x-11}\)

Để phân số trên là số hữu tỉ âm.

=>\(\frac{4}{x-11}<1\)

=>4<x-11

=>x-11>4

=>x-11+11>4+11

=>x>45

Vậy để phân số trên là số hữu tỉ âm thì x>45

Các câu sau bạn làm tương tự nha.

27 tháng 11 2016

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)

Khi đó: \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\)

           \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Vậy \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

27 tháng 11 2016

bạn giải giúp mik bài 2 và bài 3 đc ko