Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
\( a)4{\left( {x + 1} \right)^2} + {\left( {2x - 1} \right)^2} - 8\left( {x - 1} \right)\left( {x + 1} \right) = 11\\ \Leftrightarrow 4\left( {{x^2} + 2x + 1} \right) + 4{x^2} - 4x + 1 - 8\left( {{x^2} - 1} \right) = 11\\ \Leftrightarrow 4{x^2} + 8x + 4 + 4{x^2} - 4x + 1 - 8{x^2} + 8 = 11\\ \Leftrightarrow 4x + 13 = 11\\ \Leftrightarrow 4x = 11 - 13\\ \Leftrightarrow 4x = - 2\\ \Leftrightarrow x = - \dfrac{1}{2} \)
Bài 2:
\( b)\left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) + x\left( {x + 2} \right)\left( {2 - x} \right) = 1\\ \Leftrightarrow {x^3} - 27 + x\left( {2 + x} \right)\left( {2 - x} \right) = 1\\ \Leftrightarrow {x^3} - 27 + x\left( {4 - {x^2}} \right) = 1\\ \Leftrightarrow {x^3} - 27 + 4x - {x^3} = 1\\ \Leftrightarrow 4x = 1 + 27\\ \Leftrightarrow 4x = 28\\ \Leftrightarrow x = 7 \)
Ta có : B = 202 - 192 + 182 - 172 + ..... + 22 - 12
=> B = (20 - 19)(20 + 19) + (18 - 17)(18 + 17) + ..... + (2 - 1)(2 + 1)
=> B = 39 + 35 + 31 + ..... + 3
Số số hạng của dãy trên là :
(39 - 3) : 4 + 1 = 10 (số)
Tổng B là :
(39 + 3) x 10 : 2 = 210
Vậy B = 210
Ta có : \(C=\left(15^4-1\right)\left(15^4+1\right)-3^8.5^8\)
\(\Rightarrow C=\left(15^4\right)^2-1-15^8\)
\(\Rightarrow C=15^8-1-15^8\)
=> C = -1
Vậy C = - 1
a: \(=\dfrac{2\cdot5^5-4\cdot5^3+5^4}{5^3}=2\cdot5^2-4+5=50+1=51\)
b: \(=\dfrac{3^8-3^6+3^6\cdot2^3}{3^5}=3^3-3+3\cdot2^3=24+24=48\)
c: \(=\dfrac{7^6\cdot2^3-7^3}{7^3}=14^3-1\)
d: \(=28^4-28^4+1=1\)
Giải:
1) \(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(=\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(=\dfrac{-1}{12}-\dfrac{55}{24}\)
\(=\dfrac{-19}{8}\)
2) \(-1,75-\left(\dfrac{-1}{9}-2\dfrac{1}{18}\right)\)
\(=-\dfrac{7}{4}+\dfrac{1}{9}+2\dfrac{1}{18}\)
\(=-\dfrac{7}{4}+\dfrac{1}{9}+\dfrac{37}{18}\)
\(=\dfrac{5}{12}\)
3) \(-\dfrac{5}{6}-\left(-\dfrac{3}{8}+\dfrac{1}{10}\right)\)
\(=-\dfrac{5}{6}+\dfrac{3}{8}-\dfrac{1}{10}\)
\(=-\dfrac{67}{120}\)
4) \(\dfrac{2}{5}+\left(-\dfrac{4}{3}\right)+\left(-\dfrac{1}{2}\right)\)
\(=\dfrac{2}{5}-\dfrac{4}{3}-\dfrac{1}{2}\)
\(=-\dfrac{43}{30}\)
5) \(\dfrac{3}{12}-\left(\dfrac{6}{15}-\dfrac{3}{10}\right)\)
\(=\dfrac{3}{12}-\dfrac{6}{15}+\dfrac{3}{10}\)
\(=\dfrac{3}{20}\)
6) \(\left(8\dfrac{5}{11}+3\dfrac{5}{8}\right)-3\dfrac{5}{11}\)
\(=8\dfrac{5}{11}+3\dfrac{5}{8}-3\dfrac{5}{11}\)
\(=8+\dfrac{5}{11}+3+\dfrac{5}{8}-3-\dfrac{5}{11}\)
\(=8+\dfrac{5}{8}\)
\(=\dfrac{69}{8}\)
7) \(-\dfrac{1}{4}.13\dfrac{9}{11}-0,25.6\dfrac{2}{11}\)
\(=-\dfrac{1}{4}.13\dfrac{9}{11}-\dfrac{1}{4}.6\dfrac{2}{11}\)
\(=-\dfrac{1}{4}\left(13\dfrac{9}{11}+6\dfrac{2}{11}\right)\)
\(=-\dfrac{1}{4}\left(13+\dfrac{9}{11}+6+\dfrac{2}{11}\right)\)
\(=-\dfrac{1}{4}\left(13+6+1\right)\)
\(=-\dfrac{1}{4}.20=-5\)
8) \(\dfrac{4}{9}:\left(-\dfrac{1}{7}\right)+6\dfrac{5}{9}:\left(-\dfrac{1}{7}\right)\)
\(=\dfrac{4}{9}\left(-7\right)+6\dfrac{5}{9}\left(-7\right)\)
\(=-7\left(\dfrac{4}{9}+6\dfrac{5}{9}\right)\)
\(=-7\left(\dfrac{4}{9}+6+\dfrac{5}{9}\right)\)
\(=-7\left(6+1\right)\)
\(=-7.7=-49\)
Vậy ...
a) Đặt \(A=\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=2.\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3^4-1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(...\)
\(2A=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(2A=3^{64}-1\)
\(A=\frac{3^{64}-1}{2}\)
Bài 1:
a) \(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1\)
b) Sửa đề \(8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)-3^{64}\)
\(=3^{64}-1-3^{64}\)
\(=-1\)
Bài 2:
Ta có:
\(A=2009.2009\)
\(A=2009\left(2008+1\right)\)
\(A=2009.2008+2009\)
Ta lại có:
\(B=2008.2010\)
\(B=2008\left(2009+1\right)\)
\(B=2008.2009+2008\)
Vì 2008.2009 = 2009.2008
2009 > 2008
=> 2008.2009 + 2009 > 2009.2008 + 2008
=> A > B
1,a,(2-1)(2+1)(22+1)(24+1)(28+1)
=(22-1)(22+1)(24+1)(28+1)
=(24-1) (24+1)(28+1)
=(28 -1)(28+1)=216-1
2,
A=2009.2009=20092
B=2008.2010=(2009-1)(2009+1)=20092-1
Do20092>20092-1\(\Rightarrow A>B\)
a) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
b) \(-x^2+2xy-y^2=-\left(x-y\right)^2\)
c) \(-4x^4-4x^2=-4x^2\left(x^2-1\right)=-4x^2\left(x-1\right)\left(x+1\right)\)
d) \(\dfrac{1}{9}x^2-\dfrac{2}{3}x+1=\left(\dfrac{1}{3}x-1\right)^2\)
e) \(\left(4x^2+1\right)^2-16x^2=\left(4x^2+1+4x^2\right)\left(4x^2+1-4x^2\right)=8x^2+1\)
f) \(16x^2-\left(x^2+4\right)^2=\left(4x^2+x^2+4\right)\left(4x^2-x^2-4\right)=\left(5x^2+4\right)\left(3x^2-4\right)\)
g) \(x^2+6x^2+12x+8=\left(x+2\right)^3\)
h) \(27x^3-54x^2+36x-8=\left(3x-2\right)^3\)
i) \(x^3-\dfrac{3}{2}x^2+\dfrac{3}{4}x-\dfrac{1}{8}=\left(x-\dfrac{1}{2}\right)^3\)
k) \(0,125x^3-0,75x^2+1,5x-1=\left(0,5-1\right)^3\)
\(\frac{1}{x-1}-\frac{1}{x+1}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^5+1}-\frac{16}{x^{16}+1}\)
\(=\frac{x+1-x+1}{\left(x+1\right)\left(x-1\right)}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)
\(=\frac{2}{x^2-1}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)
\(=\frac{2\left(x^2+1\right)-2.\left(x^2-1\right)}{x^2-1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)
\(=\frac{2x^2+2-2x^2+2}{\left(x^2+1\right)\left(x^2-1\right)}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)
\(=\frac{4}{x^4-1}-\frac{4}{x^4+1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)
\(=\frac{4\left(x^4+1\right)-4\left(x^4-1\right)}{\left(x^4-1\right)\left(x^4+1\right)}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)
\(=\frac{8}{x^8-1}-\frac{8}{x^8+1}-\frac{16}{x^{16}+1}\)
\(=\frac{8.\left(x^8+1\right)-8\left(x^8-1\right)}{\left(x^8-1\right)\left(x^8+1\right)}-\frac{16}{x^{16}+1}\)
\(=\frac{16}{x^{16}-1}-\frac{16}{x^{16}+1}\)
\(=\frac{16.\left(x^{16}+1\right)-16.\left(x^{16}-1\right)}{\left(x^{16}-1\right)\left(x^{16}+1\right)}\)
\(=\frac{32}{x^{32}-1}\)
1) \(4x^2+4x+1=\left(2x+1\right)^2\)
2)\(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)
3)\(-x^2+10x-25=-\left(x-5\right)^2\)
4)\(1+12x+36x^2=\left(1+6x\right)^2\)
5) \(\dfrac{x^2}{4}+2xy+4y^2=\left(\dfrac{x}{2}+2y\right)^2\)
6) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
7) \(A=1^2-2^2+3^2-4^2+...-2004^2+2005^2\)
\(A=\left(-1\right)\left(1^{ }+2\right)+\left(-1\right)\left(3+4\right)+...+\left(-1\right)\left(2003+2004\right)+2005^2\)
\(A=-\left(1+2+3+...+2004\right)+2005^2\)
\(A=-\dfrac{2004.\left(2004+1\right)}{2}+2005^2\)
\(A=-1002.2005+2005^2\)
\(A=2005\left(2005-1002\right)=2005.1003=2011015\)
8) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\dfrac{\left(2^2-1\right)}{2-1}\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(B=\left(2^{64}-1\right)-2^{64}\)
\(B=-1\)