Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ rút ra là: B = {1, 2, 3, …, 11, 12}.
Số phần tử của B là 12.
Có tám kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ rút ra là số không chia hết cho 3” là: 1, 2, 4, 5, 7, 8, 10, 11.
Vì thế, xác suất của biến cố trên là: \(\dfrac{8}{{12}} = \dfrac{2}{3}\)
Trong các số 1, 2, 3, …, 12; có tám số không chia hết cho 3 là: 1, 2, 4, 5, 7, 8, 10, 11.
Vậy có tám kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số không chia hết cho 3” là: 1, 2, 4, 5, 7, 8, 10, 11 (lấy ra từ tập hợp C = {1; 2; 3; …; 12}).
cho một hộp có 10 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số {1;2;3;...;10}, hai thẻ khác nhau là hai số khác nhau. Nêu kết quả thuận lợi của biến cố " Xuất hiện trên thẻ được rút ra là số chia hết cho 5".
Đây ạ
Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ rút ra là: B = {1, 2, 3, …, 51, 52}.
Số phần tử của B là 52.
a) Trong các số từ 1 đến 52 có ba số chia 17 dư 2 là: 2, 19, 36. Trong 3 số trên, có một số chia 3 dư 1 là 19.
Vậy có một kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số chia cho 17 dư 2 và chia cho 3 dư 1” là: 19.
Vì thế, xác suất của biến cố trên là: \(\dfrac{1}{{52}}\)
b) Có tám kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số có chứa chữ số 5” là: 5, 15, 25, 35, 45, 50, 51, 52.
Vì thế, xác suất của biến cố trên là: \(\dfrac{8}{{52}} = \dfrac{2}{{13}}\)
Lời giải:
a. $A=\left\{1;2;4;7;11\right\}$
b.
Rút ngẫu nhiên 1 thẻ từ hộp, có 5 khả năng (1,2,4,7,11)
Rút được thẻ ghi số chẵn, tức là rút phải thẻ $2,4$ (2 khả năng)
Rút được thẻ ghi số nguyên tố, tức là rút phải thẻ $2,7,11$ (3 khả năng)
Xác suất để biến cố M xảy ra: $\frac{2}{5}$
Xác suất để biến cố N xảy ra: $\frac{3}{5}$
a) A = {1; 2; 4; 7; 11}
b) Xác suất của biến cố M:
2 : 5 . 100% = 40%
Xác suất của biến cố N:
3 : 5 . 100% = 60%
a/Những chấm là số chẵn: \(2;4;6\)
\(\rightarrow\)Có 3 mặt là số chẵn
Xác suất của biến cố A:
\(3:6=\dfrac{1}{2}\)
b/Chấm vừa chia hết cho 2 vừa chia hết cho 3: \(6\)
\(\rightarrow\)Có 1 mặt là số vừa chia hết cho 2 vừa chia hết cho 3
Xác suất của biến cố B:
\(1:6=\dfrac{1}{6}\)
c/Chấm không phải là số nguyên tố và là ước của 24: \(4\) ; \(6\)
\(\rightarrow\)Có 2 mặt không phải là số nguyên tố và là ước của 24
Xác suất của biến cố C:
\(2:6=\dfrac{1}{3}\)
a: \(\Omega=\left\{1;2;3;4;5;6;7;8;9;10\right\}\)
=>\(n\left(\Omega\right)=10\)
Gọi A là biến cố "Số xuất hiện trên thẻ được chọn là số chia hết cho 2 và chia hết cho 5"
Số vừa chia hết cho 2 và vừa chia hết cho 5 trong các số 1;2;3;...;10 là 10
=>A={10}
=>n(A)=1
\(P_A=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{1}{10}\)
b: Gọi B là biến cố "Số xuất hiện trên thẻ là số chia hết cho 2 và không chia hết cho 5"
Các số chia hết cho 2 và không chia hết cho 5 trong tập hợp \(\Omega\) là 2;4;6;8
=>B={2;4;6;8}
=>n(B)=4
=>\(P\left(B\right)=\dfrac{4}{10}=\dfrac{2}{5}\)
c: Gọi C là biến cố "Số xuất hiện trên thẻ là số chia hết cho 3 và không chia hết cho 9"
Các số chia hết cho 3 nhưng không chia hết cho 9 trong tập hợp \(\Omega\) là 3;6
=>C={3;6}
=>n(C)=2
=>\(P\left(C\right)=\dfrac{2}{10}=\dfrac{1}{5}\)