K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

Đây nữaHỏi đáp Toán

27 tháng 12 2017

a, \(A=x^2-6x+11\)

\(=\left(x^2-6x+9\right)+2\)

\(=\left(x-3\right)^2+2\)

Ta có :

\(\left(x-3\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-3\right)^2+2\ge2\) với mọi x

Dấu = xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy \(Min_A=2\Leftrightarrow x=3\)

b, \(B=2x^2+10x-1\)

\(=2\left(x^2+5x+\dfrac{25}{4}\right)-\dfrac{25}{2}-1\)

\(=2\left(x+\dfrac{5}{2}\right)^2-\dfrac{27}{2}\)

Lập luận tương tự câu a

c, \(C=5x-x^2\)

\(=-\left(x^2-5x+\dfrac{25}{2}\right)+\dfrac{25}{2}\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{2}\)

Lập luận tương tự câu a

4 tháng 7 2017

a)  ( 3x - 1 ) ( 2x + 7 )  - ( x + 1 ) ( 6x + 5 ) = 16 

<=> 6x+ 21x - 2x - 7 - ( 6x2 - 5x + 6x - 5) = 16

<=> 6x+ 21x - 2x - 7 - ( 6x+ x - 5 )        = 16 

<=> 6x2+ 21x - 2x - 7 - 6x-x + 5              = 16 

<=> 18x - 2                                             = 16 

<=>  18x                                                 = 18 

=>        x                                                 = 1

Vậy....  

12 tháng 7 2019

\(a,\left(6x+1\right)\left(x+2\right)-2x\left(3x-5\right)\)

\(=6x^2+12x+x+2-6x^2+10x\)

\(=23x+2\)

12 tháng 7 2019

a) (6x + 1)(x + 2) - 2x(3x - 5)

= 6x2 + 12x + x + 2 - 6x2 + 10x

= (6x2 - 6x2) + (12x + x + 10x) + 2

= 23x + 2

b) (2x - 1)2 - (2x - 3)(2x + 3)

= 4x2 - 4x + 1 - 4x2 + 9

= (4x2 - 4x2) - 4x + (1 + 9)

= -4x + 10

c) (2x - 3)3  - (3x  + 1)(5 - 4x) - 16x2

= 8x3 - 36x2 + 54x - 15x + 12x2 - 5 + 4x - 16x2

= 8x3 - (36x2 - 12x2 + 16x2) + (54x - 15x + 4x) - 5

= 8x3 - 40x2 + 43x - 5

d) (3x + 2) - (x - 5) - x(3x - 13)

= 3x  + 2 - x + 5 - 3x2 + 13x

= (3x - x + 13x) + (2 + 5) - 3x2

= 15x + 7 - 3x2

a: \(=-\left(x^2+10x-11\right)\)

\(=-\left(x^2+10x+25-36\right)\)

\(=-\left(x+5\right)^2+36< =36\)

Dấu '=' xảy ra khi x=-5

b: \(=-\left(x^2-6x+5\right)\)

\(=-\left(x^2-6x+9-4\right)\)

\(=-\left(x-3\right)^2+4< =4\)

Dấu '=' xảy ra khi x=3

c: \(=-2\left(x^2-x+\dfrac{5}{2}\right)\)

\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)

Dấu '=' xảy ra khi x=1/2

d: \(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9< =9\)

Dấu '=' xảy ra khi x=-1

11 tháng 10 2020

a) \(x^4-2x^2+1=\left(x^2-1\right)^2=\left(x-1\right)^2\left(x+1\right)^2\)

b) \(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)

c) \(2x^3-x^2-8x+4\)

\(=x^2\left(2x-1\right)-4\left(2x-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(2x-1\right)\)

d) \(x\left(x-y\right)^2+y\left(x-y\right)^2-xy+x^2\)

\(=\left(x+y\right)\left(x-y\right)^2+x\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-y^2+x\right)\)

e) \(2x^2-5x+2\)

\(=\left(2x^2-x\right)-\left(4x-2\right)\)

\(=x\left(2x-1\right)-2\left(2x-1\right)\)

\(=\left(x-2\right)\left(2x-1\right)\)

* Dạng toán về phép chia đa thức Bài 9. Làm phép chia: a. 3x3y2 : x2 b. (x5 + 4x3 – 6x2) : 4x2 c. (x3 – 8) : (x2 + 2x + 4) d. (3x2 – 6x) : (2 – x) e. (x3 + 2x2 – 2x – 1) : (x2 + 3x + 1) Bài 10: Làm tính chia 1. (x3 – 3x2 + x – 3) : (x – 3) 2. (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3) 3. (x – y – z)5 : (x – y – z)3 4. (x2 + 2x + x2 – 4) : (x + 2) 5. (2x3 +...
Đọc tiếp

* Dạng toán về phép chia đa thức

Bài 9. Làm phép chia:

a. 3x3y2 : x2 b. (x5 + 4x3 – 6x2) : 4x2 c. (x3 – 8) : (x2 + 2x + 4)

d. (3x2 – 6x) : (2 – x) e. (x3 + 2x2 – 2x – 1) : (x2 + 3x + 1)

Bài 10: Làm tính chia

1. (x3 – 3x2 + x – 3) : (x – 3) 2. (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3)

3. (x – y – z)5 : (x – y – z)3 4. (x2 + 2x + x2 – 4) : (x + 2)

5. (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) 6. (2x3 – 5x2 + 6x – 15) : (2x – 5)

Bài 11:

1. Tìm n để đa thức x4 – x3 + 6x2 – x + n chia hết cho đa thức x2 – x + 5

2. Tìm n để đa thức 3x3 + 10x2 – 5 + n chia hết cho đa thức 3x + 1

3*. Tìm tất cả các số nguyên n để 2n2 + n – 7 chia hết cho n – 2.

Bài 12: Tìm giá trị nhỏ nhất của biểu thức

1. A = x2 – 6x + 11 2. B = x2 – 20x + 101 3. C = x2 – 4xy + 5y2 + 10x – 22y + 28

Bài 13: Tìm giá trị lớn nhất của biểu thức

1. A = 4x – x2 + 3 2. B = – x2 + 6x – 11

Bài 14: CMR

1. a2(a + 1) + 2a(a + 1) chia hết cho 6 với a là số nguyên

2. a(2a – 3) – 2a(a + 1) chia hết cho 5 với a là số nguyên

3. x2 + 2x + 2 > 0 với mọi x

4. x2 – x + 1 > 0 với mọi x

5. –x2 + 4x – 5 < 0 với mọi x

4
31 tháng 12 2017

* Dạng toán về phép chia đa thức

Bài 9. Làm phép chia:

a. \(3x^3y^2:x^2=3xy^2\)

b.\(\left(x^5+4x^3-6x^2\right):4x^2=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)

c. \(\left(x^3-8\right):\left(x^2+2x+4\right)=\left(x-2\right)\left(x^2+2x+4\right):\left(x^2+2x+4\right)=x-2\)

d. \(\left(3x^2-6x\right):\left(2-x\right)=-3x\left(2-x\right):\left(2-x\right)=-3x^2\)

e. \(\left(x^3+2x^2-2x-1\right):\left(x^2+3x+1\right)\)

\(=\left[\left(x^3-1\right)+\left(2x^2-2x\right)\right]:\left(x^2+3x+1\right)\)

\(=\left[\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\right]:\left(x^2+3x+1\right)\)

\(=\left(x-1\right)\left(x^2+x+1+2x\right):\left(x^2+3x+1\right)\)

\(=\left(x-1\right)\left(x^2+3x+1\right):\left(x^2+3x+1\right)\)

\(=x-1\)

Bài 10: Làm tính chia

( Bài này có thể đặt phép chia hoặc phân tích thành nhân tử của Số bị chia sao cho có một nhân tử chia hết cho số chia)

C1 : Đặt phép tính chia

C2 : Đặt nhân tử chung ,tùy vào từng câu

1. \(\left(x^3+3x^2+x-3\right):\left(x-3\right)\)

\(=\left[x^2\left(x-3\right)+\left(x-3\right)\right]:\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+1\right):\left(x-3\right)\)

\(=x^2+1\)

2.( \(2x^4-5x^2+x^3-3-3x\) ) : \(x^2-3\)

\(=\left(2x^4+x^3-5x^2-3x-3\right):\left(x^2-3\right)\)

2x^4 + x^3 - 5x^2 - 3x - 3 x^2 - 3 2x^2 + x + 1 2x^4 -6x^2 x^3+ x^2 - 3x- 3 x^3 - 3x x^2 -3 x^2 - 3 0

3. (x – y – z)5 : (x – y – z)3

\(=\left(x-y-z\right)^{5-3}\)

\(=\left(x-y-z\right)^2\)

\(=x^2+y^2+z^2-2xy-2xz+2yz\)

4. \(\left(x^2+2x+x^2-4\right):\left(x+2\right)\)

\(=\left[x\left(x+2\right)+\left(x-2\right)\left(x+2\right)\right]:\left(x+2\right)\)

\(=\left(x+2\right)\left(x+x-2\right):\left(x+2\right)\)

\(=2x-2\)

5.( \(2x^3+5x^2-2x+3\) ) : \(\left(2x^2-x+1\right)\)

2x^3 + 5x^2 - 2x + 3 2x^2 - x + 1 x + 3 2x^3 - x^2 + x - 6x^2 - 3x + 3 6x^2 - 3x + 3 - 0

\(6.\left(2x^3-5x^2+6x-15\right):\left(2x-5\right)\)
2x^3 - 5x^2 + 6x - 15 2x - 5 x^2 + 3 2x^3 - 5x^2 - 6x - 15 6x - 15 - 0

P/S : Tối mk lm tiếp nha bn , bh mk có việc bận

31 tháng 12 2017

Bài 11.

1. Do đa thức chia có bậc là 4 , đa thức bị chia có bậc 2 nên thương có bậc 2

Đặt : x4 - x3 + 6x2 - x + n = ( x2 - x + 5)( x2 + ax + b)

x4 - x3 + 6x2 - x + n= x4 + ax3 + bx2 - x3 - ax2 - bx + 5x2 + 5ax+5b

x4 - x3 + 6x2 - x + n= x4 - x3( a + 1) + x2( b - a + 5) - x( b - 5a) + 5b

Đồng nhất hệ số , ta có :

* a + 1 = 1 => a = 0

* b - a + 5 = 6 => b = 6 - 5 + a = 1

* b - 5a = 1

* 5b = n => n = 5.1 = 5

Vậy , để............thì n = 5

2. Bài này không phức tạp nên chia bt nha , nhưng mk làm cách đồng nhất nhé ( máy tính nhà mk giống bạn Giang bị lỗi phần chia)

Do : đa thức chia bậc 3 , đa thức bị chia bậc 1 nên đa thức thương có bậc 2

Đặt : 3x3 + 10x2 - 5 + n = ( 3x + 1)( x2 + ax + b)

3x3 + 10x2 - 5 + n = 3x3 + 3ax2 + 3bx + x2 + ax + b

3x3 + 10x2 - 5 + n = 3x3 + x2( 3a + 1) + x( 3b + a) + b

Đồng nhất hệ số , ta có :

* 3a + 1 = 10 => 3a = 9 => a = 3

* 3b + a = 0 => 3b = -3 => b = -1

* b = n - 5 => n = b + 5 = -1 + 5 = 4

Vậy, để........thì : n = 4

3. 2n^2+n-7 n-2 2n - 2n^2-4n 5n-7 +5 - 5n-10 3

Để,.......thì :

n - 2 thuộc Ư( 3)

Lập bảng giá trị , ta có :
n-2 n 1 3 -1 -3 3 5 1 -1

Vậy,....