Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left|2x+\frac{1}{2}\right|\ge0\Rightarrow-\left|2x+\frac{1}{2}\right|\le0\)
\(\Rightarrow A=4,5-\left|2x+\frac{1}{2}\right|=4,5+\left(-\left|2x+\frac{1}{2}\right|\right)\le4,5\)
Đẳng thức xảy ra khi: \(2x+\frac{1}{2}=0\Rightarrow2x=\frac{-1}{2}\Rightarrow x=\frac{-1}{4}\)
Vậy giá trị lớn nhất của A là 4,5 khi \(x=\frac{-1}{4}\).
Để \(M\in Z\)thì 7 chia hết cho x - 1
=> \(x-1\in\left\{1;-1;7;-7\right\}\)
=> \(x\in\left\{2;0;8;-6\right\}\)
Vậy \(x\in\left\{2;0;8;-6\right\}\)thỏa mãn đề bài
Để M nguyên thì 7 chia hết cho x-1
Vậy x-1 thuộc:
+-1;+-7.
=> x thuộc:
0;2;8;-6.
Chúc em học tốt^^
Ta có : \(\left|x-1\right|\ge0\)
\(\left|x+2\right|\ge0\)
\(A=\left|x-1\right|+\left|x+2\right|\ge0\)
Min \(A=0\Leftrightarrow\hept{\begin{cases}x-1=0\\x+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x=-2\end{cases}}}\)
b) Tương tự câu a nha :
\(B=\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\)
MIn \(B=0\Leftrightarrow\hept{\begin{cases}x+1=0\\x+2=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-2\\x=-3\end{cases}}}\)
vui mừng gặp lại em quỳnh ngân;
a) GTNN A = 3 khi x= 1; -2
b) GTNN B = 5 khi x= -1
\(\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)
\(\Rightarrow x-1\inƯ\left(2\right)\)
\(\Rightarrow x-1=\left\{-1;1-2;2\right\}\)
\(\Rightarrow x-1=-1\Rightarrow x=0\)
...........
Tự thay nha
Để \(M\in Z\)thì x + 1 chia hết cho x - 1
=> x - 1 + 2 chia hết cho x - 1
Do x - 1 chia hết cho x - 1 => 2 chia hết cho x - 1
=> \(x-1\in\left\{1;-1;2;-2\right\}\)
=> \(x\in\left\{2;0;3;-1\right\}\)
bai2
UCLN (n,n+2)=d
=>(n+2)-n chia hết cho d
2 chia het cho d
vay d thuoc uoc cua 2={1,2}
nếu n chia hết cho 2 uoc chung lon nhta (n,n+2) la 2
neu n ko chia het cho 2=> (n,n+2) nguyen to cung nhau
BCNN =n.(n+2) neu n le
BCNN=n.(n+2)/2
\(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}\)
\(=\frac{3\left(2n-1\right)+8}{2n-1}\)
\(=3+\frac{8}{2n-1}\)
Để B nguyên thì \(2n-1\inƯ\left(8\right)\)
\(\Rightarrow2n-1=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
Rồi bạn cứ thế vào . Trường Hợp ở đây là : \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)
Ta có : \(2n-1=1\Rightarrow n=1\)
\(2n-1=-1\Rightarrow n=0\)
\(2n-1=2\Rightarrow n=1,5\)
\(2n-1=-2\Rightarrow n=-0,5\)
\(2n-1=4\Rightarrow n=2,5\)
\(2n-1=-4\Rightarrow n=-1,5\)
\(2n-1=8\Rightarrow n=4,5\)
\(2n-1=-8\Rightarrow n=-3,5\)
Để B nguyên thì 6n + 5 chia hết cho 2n - 1
=> 6n - 3 + 8 chia hết cho 2n - 1
=> 3.(2n - 1) + 8 chia hết cho 2n - 1
Do 3.(2n - 1) chia hết cho 2n - 1 => 8 chia hết cho 2n - 1
Mà 2n - 1 là số lẻ => \(2n-1\in\left\{1;-1\right\}\)
=> \(2n\in\left\{2;0\right\}\)
=> \(n\in\left\{1;0\right\}\)