K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

X³-4x+x-2=x×(x²-4)+(x-2) =x×(x-2)×(x+2)+(x-2) =(x-2)×(x×(x+2)+1)

Bài 5:

a) Ta có: \(x^4+4\)

\(=x^4+4\cdot x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b) Ta có: \(x^4+64\)

\(=x^4+16x^2+64-16x^2\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

c) Ta có: \(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+1\)

\(=x^6\left(x^2+x+1\right)-\left(x^6-1\right)\)

\(=x^6\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)

\(=\left(x^2+x+1\right)\left[x^6-\left(x-1\right)\left(x^3+1\right)\right]\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x-x^3-1\right)\)

d) Ta có: \(x^8+x^4+1\)

\(=x^8+x^4+x^6-x^6+1\)

\(=x^4\left(x^4+x^2+1\right)-\left(x^6-1\right)\)

\(=x^4\left(x^4+x^2+1\right)-\left(x^2-1\right)\left(x^4+x^2+1\right)\)

\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)

g) Ta có: \(x^4+2x^2-24\)

\(=x^4+6x^2-4x^2-24\)

\(=x^2\left(x^2+6\right)-4\left(x^2+6\right)\)

\(=\left(x^2+6\right)\left(x^2-4\right)\)

\(=\left(x^2+6\right)\left(x-2\right)\left(x+2\right)\)

i) Ta có: \(a^4+4b^4\)

\(=a^4+4a^2b^2+4b^4-4a^2b^2\)

\(=\left(a^2+2b^2\right)^2-\left(2ab\right)^2\)

\(=\left(a^2-2ab+2b^2\right)\left(a^2+2ab+2b^2\right)\)

30 tháng 8 2021

ý e đâu

 

28 tháng 8 2021

a) -4x2 + 8x - 4

= - (4x2 - 8x + 4)

= - (2x - 2)2

b) -x52 + 10 x - 5

= - 5(x2 - 2x + 1)

= - 5(x - 1)2

28 tháng 8 2021

-4x^2+8x-4

=-4.(x^2-2x+1)

=-4.(x-1)^2

19 tháng 6 2016

a)x7+x5+1=x7+x6-x6+2x5-x5+x4-x4+x3-x3+x2-x2+1

=x7-x6+x5-x3+x2+x6-x5+x4-x2+x+x5-x4+x3-x+1

=x2(x5-x4+x3-x+1)+x(x5-x4+x3-x+1)+1(x5-x4+x3-x+1)

=(x2+x+1)(x5-x4+x3-x+1)

b)4x4-32x2+1=4x4+12x3+2x2-12x3-36x2-6x+2x2+6x+1

=2x2(2x2+6x+1)-6x(2x2+6x+1)+1(2x2+6x+1)

=(2x2-6x+1)(2x2+6x+1)

c)x6+27=(x2+3)(x2-3x+3)(x2+3x+3)

d)3(x4+x2+1)-(x2+x+1)

=3x4-3x3+2x2+3x3-3x2+2x+3x2-3x+2

=x2(3x2-3x+2)+x(3x2-3x+2)+1(3x2-3x+2)

=(x2+x+1)(3x2-3x+2)

e)bạn tự làm nhé

6 tháng 8 2020

a, ( x2 + x )2 - 14 ( x2 + x ) + 24

= (x2 + x)2 - 2(x2 + x) -12(x2 + x) + 24

= (x2 + x).(x2 + x -2) - 12(x2 + x -2)

= (x2 + x -2).(x2 + x -12)

= (x2 + 2x - x - 2).(x2 + 4x - 3x - 12)

=[x.(x+2)-(x+2)].[x.(x+4)-3(x+4)]

= (x+2).(x-1).(x+4).(x-3)

= x4 + 2x3 - 13x2 - 14x + 24

b, ( x2 + x )2 + 4x2 + 4x - 12

= x4 + 2x3 + x2 + 4x2 + 4x -12

= x4 + 2x3 + 5x2 + 4x -12

c, x4 + 2x3 + 5x2 + 4x - 12

= x4 - x3 + 3x3 - 3x2 + 8x2 - 8x +12x -12

= x3(x-1) + 3x2(x-1) + 8x(x-1) + 12(x-1)

= (x-1) . (x3 + 3x2 + 8x +12)

= (x-1) . ( x3 +2x2 + x2 + 2x + 6x +12)

= (x-1). [x2(x+2) + x(x+2) + 6(x+2)]

= (x-1).(x+2).(x2 + x+ 6)

Bài 4:

a) Ta có: \(x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\)

\(=\left(x^9-x^7\right)-\left(x^6-x^4\right)-\left(x^5-x^3\right)+\left(x^2-1\right)\)

\(=x^7\left(x^2-1\right)-x^4\left(x^2-1\right)-x^3\left(x^2-1\right)+\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^7-x^4-x^3+1\right)\)

\(=\left(x^2-1\right)\cdot\left[x^4\left(x^3-1\right)-\left(x^3-1\right)\right]\)

\(=\left(x^2-1\right)\cdot\left(x^3-1\right)\cdot\left(x^4-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x-1\right)\left(x^2+x+1\right)\cdot\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)

\(=\left(x-1\right)^3\cdot\left(x+1\right)^2\cdot\left(x^2+1\right)\cdot\left(x^2+x+1\right)\)

5 tháng 8 2020

a, Ta có : \(x^5-x^4-x^3-x^2-x-2\)

\(=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2\)

\(=x^4\left(x-2\right)+x^3\left(x-2\right)+x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)\)

\(=\left(x-2\right)\left(x^4+x^3+x^2+x+1\right)\)

31 tháng 7 2017

1) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=x^4+x^3+2x^2+x^3+x^2+2x+x^2+x+2-12\)

\(=x^4+2x^3+4x^2+3x-10=\left(x^4+2x^3\right)+\left(4x^2+8x\right)+\left(-5x-10\right)\)

\(=x^3.\left(x+2\right)+4x.\left(x+2\right)-5.\left(x+2\right)=\left(x+2\right)\left(x^3+4x-5\right)\)

\(=\left(x+2\right)\left(x^3-x^2+x^2-x+5x-5\right)=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)

2) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)

Đặt  \(a=x^2+7x+10\) thì ta có :\(a.\left(a+2\right)-24=a^2+2a-24=\left(a^2+2a+1\right)-25=\left(a+1\right)^2-5^2\)

\(=\left(a+1+5\right)\left(a+1-5\right)=\left(a+6\right)\left(a-4\right)\)

Thay a , ta có :

\(\left(x^2+7x+10+6\right)\left(x^2+7x+10-4\right)=\left(x^2+7x+16\right).\left(x^2+x+6x+6\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)