K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2020

a) \(4x^2-12x+9\)

\(=\left(2x\right)^2-2.2.3+3^2\)

\(=\left(2x-3\right)^2\)

b) \(4x^2+4x+1\)

\(=\left(2x\right)^2+2.2x.1+1^2\)

\(=\left(2x+1\right)^2\)

c) \(1+12x+36x^2\)

\(=1^2+2.6x+\left(6x\right)^2\)

\(=\left(1+6x\right)^2\)

d) \(9x^2-24xy+16y^2\)

\(=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2\)

\(=\left(3x-4y\right)^2\)

e) Viết = công thức trực quan hộ mình

f) \(-x^2+10x-25\)

\(=-\left(x^2-10x+25\right)\)

\(=-\left(x^2-2.5x+5^2\right)\)

\(=-\left(x-5\right)^2\)

15 tháng 8 2020

a) \(4x^2-12x+9\)

\(=\left(2x\right)^2-2.2x.3+3^2\)

\(=\left(2x-3\right)^2\)

b) \(4x^2+4x+1\)

\(=\left(2x\right)^2+2.2x.1+1^2\)

\(=\left(2x+1\right)^2\)

c) \(1+12x+36x^2\)

\(=1^2+2.1.6x+\left(6x\right)^2\)

\(=\left(1+6x\right)^2\)

d) \(9x^2-24xy+16y^2\)

\(=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2\)

\(=\left(3x-4y\right)^2\)

e) \(\frac{x^2}{4}+2xy+4y^2\)

\(=\left(\frac{x}{2}\right)^2+2.\frac{x}{2}.2y+\left(2y\right)^2\)

\(=\left(\frac{x}{2}+2y\right)^2\)

f) \(-x^2+10x-25\)

\(=-\left(x^2-10x+25\right)\)

\(=-\left(x^2-2.5x+5^2\right)\)

\(=-\left(x-5\right)^2\)

g) \(-16a^4b^6-24a^5b^5-9a^6b^4\)

\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)

\(=-a^4b^4\left[\left(4b\right)^2+2.4b.3a+\left(3a\right)^2\right]\)

\(=-a^4b^4\left(4b+3a\right)^2\)

h) \(25x^2-20xy+4y^2\)

\(=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)

\(=\left(5x-2y\right)^2\)

i) \(25x^4-10x^2y+y^2\)

\(=\left(5x^2\right)^2-2.5x^2y+y^2\)

\(=\left(5x^2-y\right)^2\)

2 tháng 8 2020

chữ mình nó không được đẹp cho lắm, thông cảm

2 tháng 8 2020
https://i.imgur.com/tmaToim.png
18 tháng 6 2016

a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)

b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)

c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)

d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2

= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)

e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)

f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)

g) chắc là 3xyz 

= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)

h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)

i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy

k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).

Bài 4:

a) Ta có: \(x^3+6x^2+12x+8\)

\(=x^3+2x^2+4x^2+8x+4x+8\)

\(=x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+4x+4\right)\)

\(=\left(x+2\right)^3\)

b) Ta có: \(x^3-3x^2+3x-1\)

\(=x^3-x^2-2x^2+2x+x-1\)

\(=x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-2x+1\right)\)

\(=\left(x-1\right)^3\)

c) Ta có: \(1-9x+27x^2-27x^3\)

\(=1-3x-6x+18x^2+9x^2-27x^3\)

\(=\left(1-3x\right)-6x\left(1-3x\right)+9x^2\left(1-3x\right)\)

\(=\left(1-3x\right)\left(1-6x+9x^2\right)\)

\(=\left(1-3x\right)^3\)

d) Ta có: \(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\)

\(=x^3+3\cdot x^2\cdot\frac{1}{2}+3\cdot x\cdot\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3\)

\(=\left(x+\frac{1}{2}\right)^3\)

e) Ta có: \(27x^3-54x^2y+36xy^2-8y^3\)

\(=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=\left(3x-2y\right)^3\)

26 tháng 7 2020

a, Ta có : \(-x^2+2x-1-3\)

\(=-\left(x-1\right)^2-3\)

Ta thấy : \(\left(x-1\right)^2\ge0\forall x\)

=> \(-\left(x-1\right)^2-3\le-3\forall x\)

Vậy Max = -3 <=> x = 1 .

b, Ta có : \(-x^2-4x-4+4\)

\(=-\left(x+2\right)^2+4\)

Ta thấy : \(\left(x+2\right)^2\ge0\forall x\)

=> \(-\left(x+2\right)^2+4\le4\forall x\)

Vậy Max = 4 <=> x = -2 .

c, Ta có : \(-9x^2+24x-16-2\)

\(=-9\left(x^2-\frac{2.4x}{3}+\frac{16}{9}\right)-2\)

\(=-9\left(x-\frac{4}{3}\right)^2-2\)

Ta thấy : \(\left(x-\frac{4}{3}\right)^2\ge0\forall x\)

=> \(-9\left(x-\frac{4}{3}\right)^2-2\le-2\forall x\)

Vậy Max = -2 <=> x = \(\frac{4}{3}\) .

d, Ta có : \(-x^2+4x-4+3\)

\(=-\left(x-2\right)^2+3\)

Ta thấy : \(\left(x-2\right)^2\ge0\forall x\)

=> \(-\left(x-2\right)^2+3\le3\forall x\)

Vậy Max = 3 <=> x = 2 .

e, Ta có : \(-x^2+2x-1-4y^2-4y-1+7\)

\(=-\left(x-1\right)^2-4\left(y^2+y+\frac{1}{4}\right)+7\)

\(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\)

Ta thấy : \(\left\{{}\begin{matrix}\left(x-1\right)^2\\\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\ge0\forall xy\)

=> \(\left\{{}\begin{matrix}-\left(x-1\right)^2\\-4\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\le0\forall xy\)

=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2\le0\forall xy\)

=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\le7\forall xy\)

Vậy Max = 7 <=> \(\left\{{}\begin{matrix}x=1\\y=-\frac{1}{2}\end{matrix}\right.\)

26 tháng 7 2020
https://i.imgur.com/0AA3SFZ.jpg
19 tháng 6 2016

a)x7+x5+1=x7+x6-x6+2x5-x5+x4-x4+x3-x3+x2-x2+1

=x7-x6+x5-x3+x2+x6-x5+x4-x2+x+x5-x4+x3-x+1

=x2(x5-x4+x3-x+1)+x(x5-x4+x3-x+1)+1(x5-x4+x3-x+1)

=(x2+x+1)(x5-x4+x3-x+1)

b)4x4-32x2+1=4x4+12x3+2x2-12x3-36x2-6x+2x2+6x+1

=2x2(2x2+6x+1)-6x(2x2+6x+1)+1(2x2+6x+1)

=(2x2-6x+1)(2x2+6x+1)

c)x6+27=(x2+3)(x2-3x+3)(x2+3x+3)

d)3(x4+x2+1)-(x2+x+1)

=3x4-3x3+2x2+3x3-3x2+2x+3x2-3x+2

=x2(3x2-3x+2)+x(3x2-3x+2)+1(3x2-3x+2)

=(x2+x+1)(3x2-3x+2)

e)bạn tự làm nhé

20 tháng 8 2020

a) \(x^2-xz-9y^2+3yz\)

\(=\left(x^2-9y^2\right)-\left(xz-3yz\right)\)

\(=\left[x^2-\left(3y\right)^2\right]-z\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y-z\right)\)

b) \(x^3-x^2-5x+125\)

\(=\left(x^3+125\right)-\left(x^2+5x\right)\)

\(=\left(x^3+5^3\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+5^2\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+5^2-x\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

c) \(x^3+2x^2-6x-27\)

\(=\left(x^3-27\right)-\left(2x^2-6x\right)\)

\(=\left(x^3-3^3\right)-2x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+3^2\right)-2x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+3^2-2x\right)\)

\(=\left(x-3\right)\left(x^2+x+9\right)\)

e) \(4x^4+4x^3-x^2-x\)

\(=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=\left(x+1\right)\left(4x^3-x\right)\)

f) \(x^6-x^4-9x^3+9x^2\)

\(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=\left(x-1\right)\left[x^4\left(x+1\right)-9x^2\right]\)

\(=\left(x-1\right)\left(x^5+x^4-9x^2\right)\)

30 tháng 7 2020

cái cuối hằng đẳng thức là xong mà bạn

30 tháng 7 2020

a) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)

\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)

\(=\left(-6x-18\right)\left(8x^2-18\right)\)

b) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)

\(=\left[3\left(x+y-1\right)\right]^2-\left[2\left(2x+3y+1\right)\right]^2\)

\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)

\(=\left(3x+3y-3+4x+6y+2\right)\left(3x+3y-3-4x-6y-2\right)\)

\(=\left(7x+9y-1\right)\left(-x-3y-5\right)\)

c) \(-4x^2+12xy-9y^2+25\)

\(=-\left(2x\right)^2+2.2x.3y-\left(3y\right)^2+5^2\)

\(=-\left[\left(2x\right)^2-2.2x.3y+\left(3y\right)^2-5^2\right]\)

\(=-\left[\left(2x-3y\right)^2-5^2\right]\)

\(=-\left(2x-3y-5\right)\left(2x-3y+5\right)\)

d) \(x^2-2xy+y^2-4m^2+4mn-n^2\)

\(=\left(x^2-2xy+y^2\right)-4m\left(m-n\right)-n^2\)

\(=\left(x-y\right)^2-4m\left(m-n\right)-n^2\)

\(=\left(x-y-n\right)\left(x-y+n\right)-4m\left(m-n\right)\)

15 tháng 8 2017

1/\(9x^2+6x-575=\left(3x\right)^2+2.3x.1+1-576=\left(3x+1\right)^2-24^2=\left(3x-23\right)\left(3x+25\right)\)

2/\(81x^4+4=81x^4+36x^2+4-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2\)

\(=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)

3/đặt \(t=x^2+8x+7\) thì đa thức cần phân tích:

t(t+8)+15=t2+8t+15=t2+3t+5t+15=t(t+3)+5(t+3)=(t+3)(t+5)=(x2+8x+10)(x2+8x+12)=(x2+8x+10)(x2+2x+6x+12)

=(x2+8x+10)[x(x+2)+6(x+2)]=(x2+8x+10)(x+2)(x+6)

tạm thế này đã, phải đi ăn cơm rồi :v

15 tháng 8 2017

giúp mình nốt 4,5 nha