Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(4x^2-6x\)
\(=2x\left(2x-3\right)\)
b) Ta có: \(9x^4y^3+3x^2y^4\)
\(=3x^2y^3\left(3x^2+y\right)\)
c) Ta có: 3(x-y)-5x(y-x)
=3(x-y)+5x(x-y)
=(x-y)(3+5x)
d) Ta có: \(x^3-2x^2+5x\)
\(=x\left(x^2-2x+5\right)\)
e) Ta có: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=\left(x+3y\right)\left(5-15x\right)\)
\(=5\left(x+3y\right)\cdot\left(1-3x\right)\)
f) Ta có: \(2x^2\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^2+4\right)\)
\(=2\left(x+1\right)\left(x^2+2\right)\)
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
Bài 10 :
Câu a :
\(5xy\left(x-y\right)-2x+2y\)
\(=5xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(5xy-2\right)\)
Câu b :
\(6x-2y-x\left(y-3x\right)\)
\(=2\left(3x-y\right)+x\left(3x-y\right)\)
\(=\left(3x-2y\right)\left(2+x\right)\)
Câu c :
\(x^2+4x-xy-4y\)
\(=x\left(x+4\right)-y\left(x+4\right)\)
\(=\left(x+4\right)\left(x-y\right)\)
Câu d :
\(3xy+2z-6y-xz\)
\(=\left(3xy-6y\right)-\left(xz-2z\right)\)
\(=3y\left(x-2\right)-z\left(x-2\right)\)
\(=\left(x-2\right)\left(3y-z\right)\)
Bài 11 :
Câu a :
\(4-9x^2=0\)
\(\Leftrightarrow\left(2-3x\right)\left(2+3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2-3x=0\\2+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy ........................
Câu b :
\(x^2+x+\dfrac{1}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\dfrac{1}{2}=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy........................
Câu c :
\(2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy..................
Câu d :
\(3x\left(x-4\right)-x+4=0\)
\(\Leftrightarrow3x\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy................................
Câu e :
\(x^3-\dfrac{1}{9}x=0\)
\(\Leftrightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Leftrightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\\x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy........................
Câu f :
\(\left(3x-y\right)^2-\left(x-y\right)^2=0\)
\(\Leftrightarrow\left(3x-y-x+y\right)\left(3x-y+x-y\right)=0\)
\(\Leftrightarrow2x\left(4x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\4x-2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy..........................
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
Bài 4 :
a) \(x^3+x^2y-xy^2-y^3=x^2\left(x+y\right)-y^2\left(x+y\right)=\left(x^2-y^2\right)\left(x+y\right)=\left(x-y\right)\left(x+y\right)^2\)
b)\(x^2y^2+1-x^2-y^2=\left(x^2y^2-x^2\right)-\left(y^2-1\right)=x^2\left(y^2-1\right)-\left(y^2-1\right)=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)\)
c) \(x^2-y^2-4x+4y=\left(x^2-y^2\right)-\left(4x-4y\right)=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)=\left(x-y\right)\left(x+y-4\right)\)
d)
\(x^2-y^2-2x-2y=\)\(\left(x^2-y^2\right)-\left(2x+2y\right)=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)
e) Trùng câu d
f) \(x^3-y^3-3x+3y=\left(x-y\right)\left(x^2-xy+y^2\right)-3\left(x-y\right)=\left(x-y\right)\left(x^2-xy+y^2-3\right)\)
Bài 5:
a) \(x^3-x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy ...
b) Sửa đề : \(\left(2x-3\right)^2-\left(4x^2-9\right)=0\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3-2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(-6\right)=0\)\
\(\Leftrightarrow2x-3=6\)
\(\Leftrightarrow x=\frac{9}{2}\)
vậy........
c) \(x^4+2x^3-6x-9=0\)
\(\Leftrightarrow\left(x^4-9\right)+\left(2x^3-6x\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow x^2-3=0\Leftrightarrow x^2=3\Leftrightarrow x=\pm\sqrt{3}\)
Vậy
d) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy ........
sau bạn đăng tách ra cho mn cùng giúp nhé
a, \(\left(-2x^5+3x^2-4x^3\right):2x^2=-x^3+\frac{3}{2}-2x\)
b, \(\left(x^3-2x^2y+3xy^2\right):\left(-\frac{1}{2}x\right)=-\frac{x^2}{2}+xy-\frac{3y^2}{2}\)
c, \(\left(3x^2y^2+6x^3y^3-12xy^2\right):3xy=xy+2x^2y^2-4y\)
d, \(\left(4x^3-3x^2y+5xy^2\right):\frac{1}{2}x=2x^2-\frac{3xy}{2}+\frac{5y^2}{2}\)
e, \(\left(18x^3y^5-9x^2y^2+6xy^2\right):3xy^2=6x^2y^3-3x+2\)
f, \(\left(x^4+2x^2y^2+y^4\right):\left(x^2+y^2\right)=\left(x^2+y^2\right)^2:\left(x^2+y^2\right)=x^2+y^2\)
2) Bạn làm phép chia đa thức cho đa thức, kẻ hẳn dấu chia ra như tiểu học ấy. Được kết quả là \(\left(4y^2+1\right)\) dư (-2y+6) nhé.
3) a) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
b) \(\left(x^2+1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow x^2+1=0\) hoặc x-3=0 hoặc x+2=0
Trường hợp 1 loại vì \(x^2\) không âm, hai trường hợp còn lại tìm được x=3 và x = -2.
4) a)\(x^2-y^2+2y-1=x^2-\left(y^2-2y+1\right)=x^2-\left(y-1\right)^2=\left(x-y+1\right)\left(x+y-1\right)\)
b) \(5x^2-10xy-20z^2+5y^2\)
= \(5\left(x^2-2xy-4z^2+y^2\right)\)
= \(5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
= 5 ( x-y-2z ) ( x-y+2z )
5) \(x^3=x\Leftrightarrow x=\pm1\)
a: \(N=\dfrac{3x^5-4x^4+6x^3}{-2x^2}=-\dfrac{3}{2}x^3+2x^2-3x\)
b: \(N=\dfrac{\left(6x^4y^5-3x^3y^4+\dfrac{1}{2}x^4y^3z\right)}{-\dfrac{1}{3}x^2y^3}=-18x^2y^2+9xy-\dfrac{3}{2}x^2z\)
c: \(\Leftrightarrow N\cdot\left(y-x\right)=\left(x-y\right)^3\)
\(\Leftrightarrow N=\dfrac{\left(x-y\right)^3}{y-x}=-\left(y-x\right)^2\)
d: \(\Leftrightarrow N\cdot\left(y^2-x^2\right)=\left(y^2-x^2\right)^2\)
hay \(N=y^2-x^2\)