K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2021

a) Xét tam giác ABC có:

M là trung điểm AB(gt)

N là trung điểm BC(gt)

=> MN là đường trung bình của tam giác ABC

=> MN//AC

Mà AB⊥AC

=> MN⊥AB

b) Xét tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=5\left(cm\right)\)

Xét tam giác ABC có

MN là đường trung bình 

=> \(MN=\dfrac{1}{2}AC=\dfrac{1}{2}.5=\dfrac{5}{2}\left(cm\right)\)

1 tháng 10 2021

:)

17 tháng 9 2019

a) Ta có: M là trung điểm AB

           N là trung điểm BC

=> MN là đường trung bình của \(\Delta ABC\)

=> MN \\ AC .Nên MN\(\perp AB\) (đpcm)

b) Áp dụng định lý Pytago ,ta có :

AB2 + AC2 = BC2

 AC2 = 132 - 122

=> AC = 5 cm

Lại có: MN =\(\frac{1}{2}AC\)(T/c đtb)

=> MN = \(\frac{1}{2}5\)= 2.5 cm

a) Xét tam giác BMN va BAC ta có:

\(\frac{BM}{BA}=\frac{BN}{BC}=\frac{1}{2}\)(vì M là trung điểm của AB, N là trung điểm của BC)

góc B chung

=> tam giác BMN đồng dạng với tam giác BAC ( c-g-c)

=> góc M=góc A = 90 độ

Vậy MN vuông góc với AB

b) 

\(MN=\sqrt{BN^2-BM^2}\)

\(\Rightarrow MN=\sqrt{\frac{13}{2}^2-6^2}\)

\(\Rightarrow MN=\frac{5}{2}\)

23 tháng 8 2017

Có đúng ko ba

5 tháng 8 2017

theo giả thiết ta có:BM=MA;BN=NC\(\Rightarrow\) MN là dg trung bình của tam giác ABC

                                                    \(\rightarrow\) MN song song vs BC\(\rightarrow\) góc BMN=BAC(đồng vị)

b/vì BM=MA ;BN=NC SUY RA:BM=MA=12:2=6 cm và BN=NC=BC:2=13:2=6.5 cm

áp dụng định lý pi-ta-go cho tam giác BNM vuông tại m:MN2=BN2+BM2

                                                                                                      thay số:MN2=62+6.52

                                                                                                    MN2=78.25 cm\(\Rightarrow\)MN=\(\sqrt{78.25}\)

11 tháng 2 2019

A B C M P

a) Diện tích của tam giác ABC là:

\(S_{\Delta ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.8.6=24\) (cm2)

b) Ta có: N là trung điểm của AB

              M là trung điểm của BC

=> MN là đường trung bình của tam giác ABC

\(\Rightarrow MN//AC\)

Mà \(AB\perp AC\) (vì tam giác ABC vuông tại A)

Suy ra: \(MN\perp AB\)

c) Trong tứ giác AMBP:

Hai đường chéo PM và AB cắt nhau tại trung điểm mỗi đường (NP = NM ; NB = NA)

=> Tứ giác AMBP là hình bình hành

Mà \(MN\perp AB\)  (cmt) cũng đồng nghĩa với \(MN\perp PM\) (vì P là điểm đối xứng với M qua AB)

=> AMBP là hình thoi (vì hình bình hành có hai đường chéo vuông góc là hình thoi)

Giúp mình với,giải chi tiết cho mình nha!Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EFa. CM: AK = KC.b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KFBài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.a. CM: Tứ giác ADME là hình bình hành.b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?c. Nếu tam giác...
Đọc tiếp

Giúp mình với,giải chi tiết cho mình nha!

Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF

a. CM: AK = KC.

b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF

Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.

a. CM: Tứ giác ADME là hình bình hành.

b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?

c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?

d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.

Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.

a. Chứng minh AE vuông góc BF

b. Chứng minh tứ giác BFDC là hình thang cân.

c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d. Chứng minh M, E, D thẳng hàng. 
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED

 

3
14 tháng 6 2017

bài 3:

D,                 bài giải 

diện tích là:

                (8x5):2=20(cm2)

                          Đ/S:20cm2

22 tháng 11 2020

Bài 2 : 

A B C D M E

a, Xét tam giác ABC ta có : 

D là trung điểm AB

M là trung điểm CB 

=)) DM là đường TB tam giác ABC 

=)) DM // AC hay DM // AE (1) 

Ta có : E là trung điểm AC 

M là trung điểm BA 

=)) EM là đường TB tam giác ABC 

=)) EM // AB hay EM // AD (2)

 Từ 1;2 =)) Tứ giác ADME là hình bình hành 

b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM 

=)) AM đồng thời là tia phân giác của ^A 

Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)

=)) Tứ giác  ADME là hình thoi 

c, Nếu tam giác ABC vuông tại A => ^A = 90^0

Xét hình bình hành ADME có ^A =90^0

=)) Tứ giác ADME là hình chữ nhật 

Giúp mình với,giải chi tiết cho mình nha!Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EFa. CM: AK = KC.b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KFBài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.a. CM: Tứ giác ADME là hình bình hành.b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?c. Nếu tam giác...
Đọc tiếp

Giúp mình với,giải chi tiết cho mình nha!

Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF

a. CM: AK = KC.

b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF

Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.

a. CM: Tứ giác ADME là hình bình hành.

b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?

c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?

d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.

Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.

a. Chứng minh AE vuông góc BF

b. Chứng minh tứ giác BFDC là hình thang cân.

c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED

 

4
15 tháng 12 2016

2/

a/ hình thang ABCD có

AB // EF

==> AB // KF

xét tam giác ABC có

F là trung điểm của BC

AB // KF

==> KF là đường trung bình của tam giác ABC

==> K là trung điểm của AC

==> AK = KC

b/

E là trung điểm AD

F là trung điểm BC

==> EF là đường trung bình của hình thang ABCD

==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)

KF là đường trung bình của tam giác ABC nên

KF = AB / 2 = 4 / 2 = 2(cm)

==> EK = EF - KF = 7 - 2 = 5(cm)

vậy EK = 5(cm), KF = 2 (cm)

3/

a/ ta có

D là trung điểm của AB

M là trung điểm của BC

==> DM là đường trung bình của tam giác ABC

==> Dm // AC

==> DM // AE ( E thuộc AC, DM // AC)

chứng minh tương tự ta có

ME là đường trung bình của tam giác ABC

==> AD // ME

tứ giác ADME có DM // AE, AD // ME nên là HBH

b/ ( nếu tam giác ABC cân tại A)

tam giác ABC cân tại A ==> AB = AC

AD = 1/2 AB (D là trung điểm của AB)

AE = 1/2 AC (E là trung điểm của AC)

==> AD = AE

c/ (nếu tam giác ABC vuông)

ta có

tứ giác ADME là HBH

góc A = 90 độ

==> tứ giác ADME là HCN

d/ ta có

AB^2 + AC^2 = BC^2

6^2 + 8^2 = 100

==> BC = 10(cm)

AM là đường trung tuyến của tam giác ABC

==> AM = 1/2 BC = 1/2 . 10 = 5(cm)

vậy AM = 5cm

 

31 tháng 1 2017

Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé

Ôn tập toán 8

Bài 3:

Ôn tập toán 8

Bài 4:

Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)

Bài 5:

Ôn tập toán 8


Câu 1.Cho tam giác ABC có AB = 24 cm, AC = 30 cm. Trên cạnh AB và AC lần lượtlấy các điểm M và N sao cho AM = 8 cm, AN = 10 cm.1.Chứng minh MN//BC2. Tính MN biết BC = 36 cmCâu 2. Cho tam giác ABC có AB = 10 cm, AC = 20 cm. Trên cạnh AC đặt đoạn thẳngAD = 5 cm. Chứng minh ABD \= ACB [Câu 3. Cho tam giác ABC vuông tại A và phân giác AD (D ∈ BC). Biết AB = 15 cm,AC = 20 cm. Tính DB và DC.Câu 4.Cho tam giác ABC vuông tại A (AB < AC) và...
Đọc tiếp

Câu 1.Cho tam giác ABC có AB = 24 cm, AC = 30 cm. Trên cạnh AB và AC lần lượt
lấy các điểm M và N sao cho AM = 8 cm, AN = 10 cm.
1.Chứng minh MN//BC
2. Tính MN biết BC = 36 cm
Câu 2. Cho tam giác ABC có AB = 10 cm, AC = 20 cm. Trên cạnh AC đặt đoạn thẳng
AD = 5 cm. Chứng minh ABD \= ACB [
Câu 3. Cho tam giác ABC vuông tại A và phân giác AD (D ∈ BC). Biết AB = 15 cm,
AC = 20 cm. Tính DB và DC.
Câu 4.Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH.
1.  Chứng minh BA2 = BH.BC.
2.  Tính độ dài cạnh AC khi biết AB = 30 cm, AH = 24 cm.
3.  Trên cạnh AC lấy điểm M sao cho CM = 10 cm, trên cạnh BC lấy điểm N sao cho CN
= 8 cm. Chứng minh tam giác CMN vuông.
4.  Chứng minh CM.CA = CN.CB
Câu 5. (7đ) Cho tam giác ABC nhọn và đường cao AH. Kẻ HI ⊥ AB và HK ⊥ AC.
1. Chứng minh AH2 = AI.AB.

2. Chứng minh 4AIK v 4ACB

3.  Đường phân giác của góc AHB cắt AB tại E. Biết EB/ AB = 2/ 5 . Tính tỉ số BI /AI
Câu 6.  Cho tam giác AOB cân tại O (O <b 90◦
) và hai đường cao AD, BE. Đường vuông
góc với OA tại A cắt tia OB tại C. Chứng minh:
1.  ED//AB.
2.  OB2 = OE.OC
3. AB là đường phân giác của DAC \.
4. (Chứng minh BD.OA = BC.OE

giúp mình với nhé :( cần gấp

0