K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2021

a) Xét ΔAHB và ΔCAB có

Góc B chung

Góc AHB= Góc A=90o

=>  ΔAHB ∼ ΔCAB (gg)

b) Xét ΔABC có Góc A=90o

=> AB2 + AC2=BC2

=>152+202=BC2

=> BC=25 cm

ta lại có SΔABC =\(\dfrac{AB.AC}{2}=\dfrac{BC.AH}{2}\)

=>\(AB.AC=BC.AH=>15.20=25.AH\)=>AH=12cm

c) M là trung điểm của BC=> BM=\(\dfrac{1}{2}BC=\dfrac{1}{2}.25=12,5\) cm

Xét ΔABH có góc BHA=90o

=> HB2+AH2=AB2

=> BH2+122=152=> BH=9cm

ta có AH⊥BC => AH⊥BM ( M∈BC)

SΔAHM=SΔABM-SΔABH

=> SΔAHM=\(\dfrac{12.12,5}{2}-\dfrac{12.9}{2}=21cm^2\)

15 tháng 6 2021

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE ....
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do ABAC,HEAB,HFACAB⊥AC,HE⊥AB,HF⊥AC

ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o

AEHF→◊AEHF là hình chữ nhật

AH=EF

Mấy câu khác chưa học !

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Bài làm

b) Xét tam giác HAP có:

Q là trung điểm BH

P là trung điểm AH

=> QP là đường trung bình

=> QP // AB 

=> \(\widehat{HQP}=\widehat{QPA}\)

Xét tam giác HQP và tam giác ABC có:

\(\widehat{HQP}=\widehat{QPA}\)

\(\widehat{PHQ}=\widehat{BAC}\left(=90^0\right)\)

=> Tam giác HQP ~ Tam giác ABC ( g - g )

=> \(\frac{HQ}{AB}=\frac{HP}{AC}\Rightarrow\frac{AC}{AB}=\frac{HP}{HQ}\Rightarrow\frac{AB}{AC}=\frac{HQ}{HP}\)             (1)

Xét tam giác HAB có: 

QP // AB

=> Tam giác HQP ~ HAB 

=> \(\frac{HQ}{QB}=\frac{HP}{PA}\Rightarrow\frac{HQ}{HP}=\frac{QB}{PA}\)             (2)

Từ (1) và (2) => \(\frac{AB}{AC}=\frac{QB}{PA}\)

Xét tam giác AHC vuông ở H có: 

\(\widehat{PAC}+\widehat{BCA}=90^0\)(3)

Xét tam giác ABC vuông ở A có:

\(\widehat{CBA}+\widehat{BCA}=90^0\)  (4)

Từ (3) và (4) => \(\widehat{PAC}=\widehat{CBA}\)

Xét tam giác ABQ và tam giác CAP có:

\(\frac{AB}{AC}=\frac{QB}{PA}\)

\(\widehat{PAC}=\widehat{CBA}\)

=> Tam giác ABQ ~ Tam giác CAP ( c-g-c ) ( đpcm )

Bài làm

a) Vì AM là trung tuyến

=> M là trung điểm BC 

=> BM = MC = BC/2 = ( BH + HC )/2 = ( 9 + 16 )/2 = 12,5 ( cm )

Ta có: BH + HM + MC = BC

=> BH + HM + MC = BH + HC

hay 9 + HM + 12,5 = 9 + 16

=> HM = 9 + 16 - 9 - 12,5 

=> HM = 3,5 ( cm )

Vì tam giác ABC là tam giác vuông ở A

Mà AM trung tuyến

=> AM = MC = BM = 12,5 ( cm )

Xét tam giác AHM vuông ở H có:

Theo định lí Pytago có:

AH2 = AM2 - HM2 

hay AH2 = 12,52 - 3,52 

=> AH2 = 156,25 - 12,25

=> AH2 = 144

=> AH = 12 ( cm )

SABC = 1/2 . AH . HM = 1/2 . 12 . 3,5 = 21 ( cm2 )

Xét tam giác AHB vuông ở H có:

Theo định lí Py-ta-go có:

AB2 = BH2 + AH2 

=> AB2 = 92 + 212 

=> AB2 = 81 + 441

=> AB2 = 522

=> AB \(\approx\)22,8 ( cm )

Xét tam giác AHC vuông ở H có: 

Theo định lí Pytago có:

AC2 = AH2 + HC2 

=> AC2 = AH2 + ( HM + MC )2 

hay AC2 = 212 + ( 3,5 + 12,5 )2 

=> AC2 = 441 + 256

=> AC2 = 697

=> AC \(\approx\)26,4 ( cm )

Chu vi tam giác ABC là: AB + AC + BC = 22,8 + 26,4 + 25 = 74,2 ( cm )

SABC = 1/2 . AH . BC = 1/2 . 21 . 25 = 262,5 ( cm2 )

15 tháng 4 2018

a)  Xét    \(\Delta ABH\)và   \(\Delta CBA\)có:

     \(\widehat{AHB}=\widehat{CAB}=90^0\)

      \(\widehat{B}\) chung

suy ra:   \(\Delta ABH~\Delta CBA\)

b)   Áp dụng định lý Pytago  vào tam giác vuông  ABC ta có:

           \(BC^2=AB^2+AC^2\)

\(\Rightarrow\)\(BC^2=15^2+20^2=625\)

\(\Rightarrow\)\(BC=\sqrt{625}=25\)

\(\Delta ABH~\Delta CBA\)\(\Rightarrow\)\(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)

\(\Rightarrow\)\(\frac{AH}{20}=\frac{BH}{15}=\frac{15}{20}=\frac{3}{4}\)

\(\Rightarrow\)\(\frac{AH}{20}=\frac{3}{4}\)\(\Rightarrow\)\(AH=15\)

         \(\frac{BH}{15}=\frac{3}{4}\)\(\Rightarrow\)\(BH=11,25\)

13 tháng 4 2016

Khong du dk cm

23 tháng 5 2021

Sao ý A nhiều ng bảo ko làm đc nhỉ??? 

Ta chỉ cần dùng tính chất bắc cầu là ra mà