Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: BE+AE=BA
DF+FC=DC
mà BA=DC
và AE=FC
nên BE=DF
Ta có: AN+ND=AD
CM+MB=CB
mà AD=CB
và AN=CM
nên ND=MB
Xét ΔANE và ΔCMF có
AN=CM
\(\widehat{A}=\widehat{C}\)
AE=CF
Do đó: ΔANE=ΔCMF
Suy ra: NE=MF
Xét ΔEBM và ΔFDN có
EB=FD
\(\widehat{B}=\widehat{D}\)
BM=DN
Do đó: ΔEBM=ΔFDN
Suy ra: EM=FN
Xét tứ giác MENF có
ME=NF
NE=MF
Do đó: MENF là hình bình hành
Ta có: BE+AE=BA
DF+FC=DC
mà BA=DC
và AE=FC
nên BE=DF
Ta có: AN+ND=AD
CM+MB=CB
mà AD=CB
và AN=CM
nên ND=MB
Xét ΔANE và ΔCMF có
AN=CM
\(\widehat{A}=\widehat{C}\)
AE=CF
Do đó: ΔANE=ΔCMF
Suy ra: NE=MF
Xét ΔEBM và ΔFDN có
EB=FD
\(\widehat{B}=\widehat{D}\)
BM=DN
Do đó: ΔEBM=ΔFDN
Suy ra: EM=FN
Xét tứ giác MENF có
ME=NF
NE=MF
Do đó: MENF là hình bình hành
a: Ta có: BE+AE=BA
DF+FC=DC
mà BA=DC
và AE=FC
nên BE=DF
Ta có: AN+ND=AD
CM+MB=CB
mà AD=CB
và AN=CM
nên ND=MB
Xét ΔANE và ΔCMF có
AN=CM
\(\widehat{A}=\widehat{C}\)
AE=CF
Do đó: ΔANE=ΔCMF
Suy ra: NE=MF
Xét ΔEBM và ΔFDN có
EB=FD
\(\widehat{B}=\widehat{D}\)
BM=DN
Do đó: ΔEBM=ΔFDN
Suy ra: EM=FN
Xét tứ giác MENF có
ME=NF
NE=MF
Do đó: MENF là hình bình hành
a: Ta có: BE+AE=BA
DF+FC=DC
mà BA=DC
và AE=FC
nên BE=DF
Ta có: AN+ND=AD
CM+MB=CB
mà AD=CB
và AN=CM
nên ND=MB
Xét ΔANE và ΔCMF có
AN=CM
\(\widehat{A}=\widehat{C}\)
AE=CF
Do đó: ΔANE=ΔCMF
Suy ra: NE=MF
Xét ΔEBM và ΔFDN có
EB=FD
\(\widehat{B}=\widehat{D}\)
BM=DN
Do đó: ΔEBM=ΔFDN
Suy ra: EM=FN
Xét tứ giác MENF có
ME=NF
NE=MF
Do đó: MENF là hình bình hành
a: Ta có: BE+AE=BA
DF+FC=DC
mà BA=DC
và AE=FC
nên BE=DF
Ta có: AN+ND=AD
CM+MB=CB
mà AD=CB
và AN=CM
nên ND=MB
Xét ΔANE và ΔCMF có
AN=CM
AE=CF
Do đó: ΔANE=ΔCMF
Suy ra: NE=MF
Xét ΔEBM và ΔFDN có
EB=FD
BM=DN
Do đó: ΔEBM=ΔFDN
Suy ra: EM=FN
Xét tứ giác MENF có
ME=NF
NE=MF
Do đó: MENF là hình bình hành
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔAEM có
E là trung điểm của AB
EN//AM
Do đó; N là trung điểm của BM
=>BN=NM(1)
Xét ΔDNC có
F là trung điểm của DC
FM//NC
Do đó: M là trung điểm của DN
=>DM=MN(2)
Từ (1) và (2) suy ra DM=MN=NB
c: Xét ΔADM và ΔCBN có
AD=CB
\(\widehat{ADM}=\widehat{CBN}\)
DM=BN
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
mà EN=AM/2
và MF=CN/2
nên EN=MF
Xét tứ giác MENF có
NE//MF
NE=MF
Do đó: MENF là hình bình hành