Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)
\(\Rightarrow P=abc\)
Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z
\(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
Suy ra : \(A^2\le2\Rightarrow A\le\sqrt{2}\)
Vậy Max A = \(\sqrt{2}\) khi \(\hept{\begin{cases}x=y\\x=z\\x+y+z=\sqrt{2}\end{cases}\Leftrightarrow}x=y=z=\frac{\sqrt{2}}{3}\)
cho x,y là các số thực ko âm tm: x+y+z=2.Tìm giá trị nhỏ nhất của biểu thứcx^4+Y^4+Z^4 .
B tự c/m BĐT \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)nhé.
Dấu " = " xảy ra \(\Leftrightarrow x=y=z\)
Áp dụng :
\(x^4+y^4+z^4\ge\frac{1}{3}.\left(x^2+y^2+z^2\right)^2\ge\frac{1}{3}.\left[\frac{1}{3}.\left(x+y+z\right)^2\right]^2=\frac{1}{27}.\left(x+y+z\right)^4=\frac{1}{27}.2^4=\frac{16}{27}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)
KL:...
Bài 1 :
a) \(A=x^2-6x+11\)
\(A=x^2-2\cdot x\cdot3+3^2+2\)
\(A=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=' xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
b) \(B=2x^2+10x-1\)
\(B=2\left(x^2+5x-\frac{1}{2}\right)\)
\(B=2\left[x^2+2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(B=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(B=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=\frac{-5}{2}\)
c) \(C=5x-x^2\)
\(C=-\left(x^2-5x\right)\)
\(C=-\left[x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right]\)
\(C=-\left[\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\right]\)
\(C=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\le\frac{25}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Bài 2 :
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[x+\left(y+z\right)\right]^3-x^3-y^3-z^3\)
\(=x^3+3x^2\left(y+z\right)+3x\left(y+z\right)^2+\left(y+z\right)^3-x^3-y^3-z^3\)
\(=3x^2\left(y+z\right)+3x\left(y+z\right)^2+y^3+3y^2z+3yz^2+z^3-y^3-z^3\)
\(=3x^2\left(y+z\right)+3x\left(y+z\right)^2+3yz\left(y+z\right)\)
\(=3\left(y+z\right)\left[x^2+x\left(y+z\right)+yz\right]\)
\(=3\left(y+z\right)\left(x^2+xy+xz+yz\right)\)
\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)
\(=3\left(y+z\right)\left(x+y\right)\left(x+z\right)\)
Áp dụng BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Rightarrow P\ge\frac{1}{2}\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2=\frac{1}{2}\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2\)
\(\Rightarrow P\ge\frac{1}{2}\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2=18\)
\(\Rightarrow P_{min}=18\) khi \(x=y=\frac{1}{2}\)
Thôi em không cần bài này nữa đâu mọi người :) em biết làm rồi :) //chờ mãi chả ai làm giúp :(( buồn mọi người ghia ớ :'( //
chỗ ý 2 là x + y + z = 1 nha