Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, => (x^2/y):(x/y) = 2:16
=> 1/y = 1/8 => y=8 ; x = 128
b, 1+2y/18 = 1+4y/24
<=> (1+2y).24 = (1+4y).18
<=> 24+48y = 18+72y
<=> 72y+18-24-48y=0
<=>24y-6=0
<=> 24y=6
<=> y=6:24 = 1/4
Khi đó : 1+2y/18 = 1+6y/6x
<=> 1+1/2/18 = 1+3/2 / 6x
<=> 1/12 = 5/12x
<=> 12x = 5: 1/12 = 60
<=> x = 60:12 = 5
Vậy .......
k mk nha
bài 4 : Ta có : \(\frac{1+2y}{18}=\frac{1+4y}{24}\left(1\right)\)
\(\Rightarrow24+48y=18+72y
\)
\(\Rightarrow y=\frac{1}{4}\)
\(\frac{1+4y}{24}=\frac{1+6y}{6x}\left(2\right)\)
Thay y = \(\frac{1}{4}\) vào (2) ta được x = 5 (thõa mãn )
Giải:
a) \(5< 5^x < 625\)
\(\Leftrightarrow5< 5^x< 5^4\)
Vì \(5=5=5\)
Nên \(1< x< 4\)
\(\Leftrightarrow x\in\left\{2;3\right\}\)
Vậy ...
b) \(2^{x-1}=16\)
\(\Leftrightarrow2^{x-1}=2^4\)
Vì \(2=2\)
Nên \(x-1=4\)
\(\Leftrightarrow x=4+1=5\)
Vậy ...
c) \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)^{x+2}}{\left(x-1\right)^{x+2}}=\dfrac{\left(x-1\right)^{x+6}}{\left(x-1\right)^{x+2}}\)
\(\Leftrightarrow1=\left(x-1\right)^{x+4}\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=1+1=2\)
Vậy ...
a,\(2x^2-8x=0\)
\(2x\left(x-4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
b,\(B\left(x\right)=\left(2x^2-8x\right)-\left(3x+2x^2\right)\)
\(=2x^2-8x-3x-2x^2\)
=\(-11x\)
c,\(-11x=0\)
\(\Rightarrow x=0\)
\(A\left(x\right)=2x^2-8x\)
\(\Rightarrow2x^2-8x=0\)
\(\Rightarrow x\left(2x-8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x=8\Rightarrow x=4\end{matrix}\right.\)
\(B\left(x\right)=-3x+2x^2\)
\(B\left(x\right)=2x^2-3x\)
\(2x^2-3x=0\)
\(\Rightarrow x\left(2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x=3\Rightarrow x=\dfrac{3}{2}\end{matrix}\right.\)
BÀi 1 :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)
Áp dụng dãy tỉ số bằng nhau ta cso :
\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y-2z}{4-6+6}=\frac{36}{4}=9\)
=> x = 9.1 = 9
=> y = 9.2 = 18
=> z = 9.3 = 27
| -x + 2 | - | x + 7 | = 0
<=> | -( -x + 2 ) | - | x + 7 | = 0
<=> | x - 2 | - | x + 7 | = 0 (1)
Xét 3 trường hợp :
1. x < -7
(1) <=> -( x - 2 ) - [ -( x + 7 ) ] = 0
<=> -x + 2 - ( -x - 7 ) = 0
<=> -x + 2 + x + 7 = 0
<=> 9 = 0 ( vô lí )
2. -7 ≤ x < 2
(1) <=> -( x - 2 ) - ( x + 7 ) = 0
<=> -x + 2 - x - 7 = 0
<=> -2x - 5 = 0
<=> -2x = 5
<=> x = -5/2 ( thỏa mãn )
3. x ≥ 2
(1) <=> ( x - 2 ) - ( x + 7 ) = 0
<=> x - 2 - x - 7 = 0
<=> -9 = 0 ( vô lí )
Vậy x = -5/2
b) | 2x - 1 | + | 2 + y | = 0
Ta có : | 2x - 1 | ≥ 0 ∀ x ; | 2 + y | ≥ 0 ∀ y
=> | 2x - 1 | + | 2 + y | ≥ 0 ∀ x, y
Dấu "=" xảy ra <=> x = 1/2 ; y = -2