K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2015

C = 10n + 18n -28

+với n =1 => C =10+18 -28 =0 chia  hết cho 9

+ Giả sử C chia hết cho 9  với  n-1

  => C =10n-1 + 18(n-1) -28 chia hết cho 9

+ Ta chứng minh C  chia hết cho 9 đúng với n

C= [10n +18n -28 = 10.10n-1 +18(n -1).10  -280 ] +(162n +432)

  =10[10n-1 + 18(n-1) -28 ] +9(18n+48) chia hết cho 9

=> dpcm

AH
Akai Haruma
Giáo viên
30 tháng 8 2019

Lời giải:

Ta xét các TH sau:

TH1: $n$ chia hết cho $3$: $n=3k$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k}+18.3k-28\)

Ta thấy:

\(10^3\equiv 1\pmod {27}\Rightarrow 10^{3k}\equiv 1^k\equiv 1\pmod {27}\)

\(18.3k=27.2k\equiv 0\pmod {27}\)

\(28\equiv 1\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 1+0-1\equiv 0\pmod {27}(1)\)

TH2: $n$ chia 3 dư $1$: $n=3k+1$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k+1}+18(3k+1)-28=10^{3k}.10+54k-10\)

Ta thấy:

\(10^{3k}\equiv 1\pmod {27} \) (cmt) \(\Rightarrow 10^{3k}.10\equiv 10\pmod {27}\)

\(54k\equiv 0\pmod {27}\)

\(10\equiv 10\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 10-0-10\equiv 0\pmod {27}(2)\)

TH3: $n$ chia 3 dư $2$: $n=3k+2$

\(10^n+18n-28=10^{3k}.100+54k+8\equiv 100+0+8\equiv 0\pmod {27}(3)\)

Từ (1);(2);(3) suy ra $10^n+18n-28$ chia hết cho $27$ với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
27 tháng 8 2019

Lời giải:

Ta xét các TH sau:

TH1: $n$ chia hết cho $3$: $n=3k$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k}+18.3k-28\)

Ta thấy:

\(10^3\equiv 1\pmod {27}\Rightarrow 10^{3k}\equiv 1^k\equiv 1\pmod {27}\)

\(18.3k=27.2k\equiv 0\pmod {27}\)

\(28\equiv 1\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 1+0-1\equiv 0\pmod {27}(1)\)

TH2: $n$ chia 3 dư $1$: $n=3k+1$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k+1}+18(3k+1)-28=10^{3k}.10+54k-10\)

Ta thấy:

\(10^{3k}\equiv 1\pmod {27} \) (cmt) \(\Rightarrow 10^{3k}.10\equiv 10\pmod {27}\)

\(54k\equiv 0\pmod {27}\)

\(10\equiv 10\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 10-0-10\equiv 0\pmod {27}(2)\)

TH3: $n$ chia 3 dư $2$: $n=3k+2$

\(10^n+18n-28=10^{3k}.100+54k+8\equiv 100+0+8\equiv 0\pmod {27}(3)\)

Từ (1);(2);(3) suy ra $10^n+18n-28$ chia hết cho $27$ với mọi số tự nhiên $n$

5 tháng 5 2019

Đề bài sai sao bạn mình thử mấy giá trị không được

AH
Akai Haruma
Giáo viên
5 tháng 10 2017

Lời giải:

a)

\(A=11^{n+2}+12^{2n+1}\)

Ta thấy \(12^2\equiv 11\pmod {133}\Rightarrow 12^{2n+1}\equiv 11^n.12\pmod {133}\)

Do đó \(A=11^{n+2}+12^{2n+1}\equiv 11^{n+2}+11^n.12\pmod {133}\)

\(\Leftrightarrow A\equiv 11^n(11^2+12)\equiv 11^n.133\equiv 0\pmod {133}\)

Vậy \(A\vdots 133\) (đpcm)

b) Đề bài không rõ

c)

Ta thấy: \(5^{2}=25\equiv 6\pmod {19}\)

\(\Rightarrow 7.5^{2n}\equiv 7.6^n\pmod {19}\)

\(\Rightarrow 7.5^{2n}+12.6^n\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)

Vậy \(7.5^{2n}+12.6^n\vdots 19\) (đpcm)

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với

30 tháng 9 2016

b) Ta có 10b-4b+3b=9b

mà 9b chia hết cho 9

hay 10b-4b+3b chia hết cho 9

17 tháng 10 2015

Ta có: 10^n + 18n - 28 = (10^n - 1) + 18n-27 = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n)-27 (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3

=> A chia hết cho 3

=> 9.A chia hết cho 27

=>9.A-27 chia hết cho 27

=>10^n + 18n -28 chia hết cho 27

=>ĐPCM

17 tháng 10 2015

mk cx k giải đk bài này 

4 tháng 4 2017

B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)

=> B=(n-2)(n-1).n(n+1)(n+2)

Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0

=> Số tận cùng của B là 0

=> B chia hết cho 10 với mọi n thuộc Z

4 tháng 4 2017

cảm ơn bạn nhiều

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???